2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS 2022)

Virtual Conference 4-6 May 2022

IEEE Catalog Number: CFP22CYP-POD ISBN:

978-1-6654-0968-1

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22CYP-POD

 ISBN (Print-On-Demand):
 978-1-6654-0968-1

 ISBN (Online):
 978-1-6654-0967-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)

ICCPS 2022

Table of Contents

Message from the ICCPS 2022 Program Co-Chairs	
Testing and Validation	
Confidence Composition for Monitors of Verification Assumptions Ivan Ruchkin (University of Pennsylvania), Matthew Cleaveland (University of Pennsylvania), Radoslav Ivanov (Rensselaer Polytechnic Institute), Pengyuan Lu (University of Pennsylvania), Taylor Carpenter (University of Pennsylvania), Oleg Sokolsky (University of Pennsylvania), and Insup Lee (University of Pennsylvania)	1
Automatic Generation of Test-Cases of Increasing Complexity for Autonomous Vehicles at Intersections	13
Coverage-Guided Fuzz Testing for Cyber-Physical Systems Sanaz Sheikhi (Stony Brook University, USA), Edward Kim (University of North Carolina, USA), Parasara Sridhar Duggirala (University of North Carolina, USA), and Stanley Bak (Stony Brook University, USA)	24
Querying Labelled Data with Scenario Programs for Sim-to-Real Validation Edward Kim (University of California at Berkeley, USA), Jay Shenoy (University of California at Berkeley, USA), Sebastian Junges (Radboud University, Netherlands), Daniel J. Fremont (University of California at Santa Cruz, USA), Alberto Sangiovanni-Vincentelli (University of California at Berkeley, USA), and Sanjit A. Seshia (University of California at Berkeley, USA)	34

Multimodality in CPS

AI-Driven Planning and Synthesis of CPS

Anomaly Based Incident Detection in Large Scale Smart Transportation Systems Mohammad Jaminur Islam (Western Michigan Unviersity, USA), Jose Paolo Talusan (Nara Institute of Science and Technology, Japan), Shameek Bhattacharjee (Western Michigan Unviersity, USA), Francis Tiausas (Nara Institute of Science and Technology, Japan), Sayyed Mohsen Vazirizade (Vanderbilt University, USA), Abhishek Dubey (Vanderbilt University, USA), Keiichi Yasumoto (Nara Institute of Science and Technology, Japan), and Sajal K. Das (Missouri University of Science and Technology, USA)	215
Interpretable Detection of Distribution Shifts in Learning Enabled Cyber-Physical Systems	225
Security and Vulnerability Detection and Protection	
A Dynamic Obfuscation Framework for Security and Utility Andrew Wintenberg (The University of Michigan, USA), Matthew Blischke (The University of Michigan, USA), Stéphane Lafortune (The University of Michigan, USA), and Necmiye Ozay (The University of Michigan, USA)	236
T-SYS: Timed-Based System Security for Real-Time Kernels	247
Learning-Based Vulnerability Analysis of Cyber-Physical Systems Amir Khazraei (Duke University, USA), Spencer Hallyburton (Duke University, USA), Qitong Gao (Duke University, USA), Yu Wang (University of Florida, USA), and Miroslav Pajic (Duke University, USA)	259
Protecting Smart Homes from Unintended Application Actions	270
WiP Abstracts, Demos, and Posters	
IEC 61131-3 Software Testing – Automatic test Generation for Native Applications	282
Scheduling Dynamic Software Updates in Safety-Critical Embedded Systems — The Case of Aerial Drones	284
Ahmed El Yaacoub (Uppsala University, Sweden), Luca Mottola (Uppsala University, Sweden), Thiemo Voigt (Uppsala University, Sweden), and Philipp Rümmer (Uppsala University, Sweden)	

Trust Me, I'm Lying: Enhancing Machine-to-Machine Trust	286
Runtime Assurance for Intelligent Cyber-Physical Systems	88
AlphaSOC: Reinforcement Learning-Based Cybersecurity Automation for Cyber-Physical Systems 2 Ryan Silva (Johns Hopkins University Applied Physics Laboratory, USA), Cameron Hickert (Johns Hopkins University Applied Physics Laboratory, USA), Nicolas Sarfaraz (Johns Hopkins University Applied Physics Laboratory, USA), Jeff Brush (Johns Hopkins University Applied Physics Laboratory, USA), Josh Silbermann (Johns Hopkins University Applied Physics Laboratory, USA), and Tamim Sookoor (Johns Hopkins University Applied Physics Laboratory, USA)	90
Automated Vehicle Multi-object Tracking at Scale with CAN	92
Model-Based Design of NEMA-Compliant Dual-Ring-Barrier Traffic Signal Controller	94
RIS-IoT: Towards Resilient, Interoperable, Scalable IoT	96
Multi-fidelity Bayesian Optimization for Co-design of Resilient Cyber-Physical Systems 2 Soumya Vasisht (Pacific Northwest National Laboratory, USA), Aowabin Rahman (Pacific Northwest National Laboratory, USA), Thiagarajan Ramachandran (Pacific Northwest National Laboratory, USA), Arnab Bhattacharya (Pacific Northwest National Laboratory, USA), and Veronica Adetola (Pacific Northwest National Laboratory, USA)	98

Making Vibration-Based On-Body Interaction Robust	300
CPS Testing using Stateless RRT Abhinav Chawla (Stony Brook University, USA) and Stanley Bak (Stony Brook University, USA)	302
Adaptive Cyber Security for Critical Infrastructure	304
Evaluating Sequential Reasoning About Hidden Objects in Traffic	306
AlgebraicSystems: Compositional Verification for Autonomous System Design	308
A Contract-Based Requirement Engineering Framework for the Design of Industrial Cyber-Physical Systems Michele Lora (University of Verona, Italy; University of Southern California, USA) and Pierluigi Nuzzo (University of Southern California, USA)	310
Semantic Tagging of CAN and Dash Camera Data from Naturalistic Drives	312
Robust and Energy Efficient Malware Detection for Robotic Cyber-Physical Systems	314
Scheduling Energy Flexible Devices Under Constrained Peak Load Consumption in Smart Grid Nilotpal Chakraborty (The LNM Institute of Information Technology, India), Roshni Chakraborty (Aalborg University, Denmark), and Ezhil Kalaimannan (University of West Florida Pensacola, USA)	316
Making ROS TF Transactional	318
Decentralized Multi-agent Coordination Under MITL Tasks and Communication Constraints Wei Wang (KTH Royal Institute of Technology, Sweden), Georg Friedrich Schuppe (KTH Royal Institute of Technology, Sweden), and Jana Tumova (KTH Royal Institute of Technology, Sweden)	320

Demo: Querying Labelled Data with Scenario Programs for Sim-to-Real Validation	22
Edward Kim (University of California at Berkeley, USA), Jay Shenoy	
(University of California at Berkeley, USA), Sebastian Junges (Radboud	
University, The Netherlands), Daniel Fremont (University of	
California, Santa Cruz), Alberto Sangiovanni-Vincentelli (University	
of California at Berkeley, USA), and Sanjit Seshia (University of	
California at Berkeley, USA)	
Author Index	25