2022 IEEE 15th Pacific Visualization Symposium (PacificVis 2022)

Virtual Symposium 11-14 April 2022

IEEE Catalog Number: CFP22APV-POD ISBN: 978-1-6654-2336-6

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22APV-POD

 ISBN (Print-On-Demand):
 978-1-6654-2336-6

 ISBN (Online):
 978-1-6654-2335-9

ISSN: 2165-8765

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE 15th Pacific Visualization Symposium (PacificVis)

PacificVis 2022

Table of Contents

IEEE PacificVis 2022 Chair Messageix
PacificVis 2022 Committeesxi
PacificVis 2022 Program Committee xiii
Keynotesxv
Socian 1. Spatial Data and Encambles
Session 1: Spatial Data and Ensembles
Detecting Critical Points in 2D Scalar Field Ensembles Using Bayesian Inference 1 Dominik Vietinghoff (Leipzig University, Germany), Michael Böttinger (Deutsches Klimarechenzentrum, Germany), Gerik Scheuermann (Leipzig University, Germany), and Christian Heine (Leipzig University, Germany)
Session 2: Transcending Dimensions
Incorporating Texture Information into Dimensionality Reduction for High-Dimensional
Images
Eindhoven, The Netherlands), Boudewijn Lelieveldt (Leiden University
Medical Center, The Netherlands), Elmar Eisemann (TU Delft, The
Netherlands), and Thomas Höllt (TU Delft, The Netherlands)
Spatio-temporal Analysis of Multi-agent Scheduling Behaviors on Fixed-track Networks
Session 3: Structured and Unstructured Fields
Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning
Boundary-Aware Rectilinear Grid: Accurate Approximation of Unstructured Dataset into
Rectilinear Grid with Solid Boundary Handling Capabilities
Dana El-Rushaidat (Jordan University of Science and Technology), Raine
Yeh (Google), and Xavier M. Tricoche (Purdue University, USA)

Session 4: Graphs

GG, dRNG, DSC: New Degree-Based Shape-based Faithfulness Metrics for Large and Complex aph Visualization	. 51
Sydney), James Wood (University of Sydney), Juan Pablo Ataides (University of Sydney), Peter Eades (University of Sydney), and Kunsoo Park (Seoul National University)	
NICON: A UNIform CONstraint Based Graph Layout Framework Jiacheng Yu (Peking University, China), Yifan Hu (Yahoo Research, United States), and Xiaoru Yuan (Peking University, China)	. 61
owser-based Hyperbolic Visualization of Graphs	, 71
ession 5: Applications	
rtual Inspection of Additively Manufactured Parts Pavol Klacansky (University of Utah, USA), Haichao Miao (LLNL, USA), Attila Gyulassy (University of Utah, USA), Andrew Townsend (LLNL, USA), Kyle Champley (LLNL, USA), Joseph Tringe (LLNL, USA), Valerio Pascucci (University of Utah, USA), and Peer-Timo Bremer (LLNL, USA)	. 81
Machine-Learning-Aided Visual Analysis Workflow for Investigating Air Pollution Data Yun-Hsin Kuo (University of California, Davis), Takanori Fujiwara (University of California, Davis), Charles CK. Chou (Academia Sinica), Chun-houh Chen (Academia Sinica), and Kwan-Liu Ma (University of California, Davis)	91
Tale of Two Centers: Visual Exploration of Health Disparities in Cancer Care	101
ession 6: Learning	
ny? Why not? When? Visual Explanations of Agent Behavior in Reinforcement Learning Aditi Mishra (Arizona State University), Utkarsh Soni (Arizona State University), Jinbin Huang (Arizona State University), and Chris Bryan (Arizona State University)	111

Session 7: Data Structures

A Study of the Locality of Persistence-Based Queries and Its Implications for the Efficiency of Localized Data Structures
Session 8: Text and Mixed Data
News Kaleidoscope: Visual Investigation of Coverage Diversity inNews Event Reporting
Evaluating the Effect of Enhanced Text-Visualization Integration on Combating Misinformation in Data Story
SET-STAT-MAP: Extending Parallel Sets for Visualizing Mixed Data
Visualization Notes
Evaluating StackGenVis with a Comparative User Study
Hierarchical Multifocus Navigation in Text Annotation Data
Visualization for Neural-Network-Based Person Re-identification
Persuasive Data Storytelling with a Data Video during Covid-19 Infodemic: Affective Pathway to Influence the Users' Perception about Contact Tracing Apps in less than 6 Minutes
1 minute (St. moorewy of 1/12mmoow)

VANT: A Visual Analytics System for Refining Parallel Corpora in Neural Machine
Translation
Hybrid Traffic Route Visual Recommendation Based on Multilayer Complex Networks
Tuning Automatic Summarization for Incident Report Visualization
Visual Analytics of Multiple Network Ranking Based on Structural Similarity
Author Index