2022 International Symposium on VLSI Design, Automation and Test (VLSI-DAT 2022)

18-21 April 2022 Hsinchu, Taiwan

IEEE Catalog Number: CFP22847-POD ISBN: 978-1-6654-0922-3

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP22847-POD

 ISBN (Print-On-Demand):
 978-1-6654-0922-3

 ISBN (Online):
 978-1-6654-0921-6

ISSN: 2380-7369

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax:

E-mail: curran@proceedings.com Web: www.proceedings.com

(845) 758-2633

proceedings

Table of Content

Session	on J1: Joint Plenary Session	
J1-2	Bridging the Physical and Digital Worlds in Data-Driven Systems	1
Sessio	on J2: Smart Edge: From Digital to Unconventional Approach (All Invited)	
J2-1	Bio-Chips for Fast Medial Tests	2
J2-2	Circuits and Architectures for Next-generation Attentive & Intelligent Systems	3
J2-3	Practical Considerations of In-Memory Computing in the Deep Learning Accelerator Applications	4
Sessio	on D1: Advanced Analog Circuit Techniques	
D1-1	Single Chip of Electrostatic Discharge Detector for IC Manufacturing Field Control	5
D1-2	An Adaptive Digital PLL Based on BBPFD Transition Probability	9
D1-3	An Injection-Locked Clock Multiplier With Injection Strength Calibration	13
D1-4	A 5-GHz Sub-Sampling Phase-Locked Loop With Pulse-Width to Current Conversion	17
D1-5	An Asynchronous Zero-Crossing-Based Incremental Delta-Sigma Converter	21
Sessio	on D2: Recent Advances on EDA	
D2-1	Performance Optimization for MLP Accelerators using ILP-Based On-Chip Weight Allocation Strategy	25
D2-2	Robust CNFET Circuit Sizing Optimization	29
D2-3	Fast and Efficient ResNN and Genetic Optimization for PVT Aware Performance Enhancement in Digital Circuits	33
D2-4	SlewFTA: Functional Timing Analysis Considering Slew Propagation	37
D2-5	Circuit Routing Using Monte Carlo Tree Search and Deep Reinforcement Learning	41
Sessio	on J3: Joint Plenary Session	
J3-2	Technology Challenges to IC Industry for Next Decade	46
Sessio	on D3: DAT Special Session - How Can ADCs Be More Efficient in Area and Energy? (All Invited)	
D3-1	Non-Uniform Sampling Data Converters: A Journey to Uncharted Circuits and	47

D3-2	Low-power Continuous-time Delta-sigma ADCs	48		
D3-3	Introduction of Noise-Shaping SAR ADCs	49		
Sessio	n D4: New Directions in Testing Technologies			
D4-1	Improving IJTAG Test Efficiency and Security	50		
D4-2	A Memory Built-In Peer-Repair Architecture for Mesh-Connected Processor Array	54		
D4-3	A Thermal Quorum Sensing Scheme for Enhancement of Integrated-Circuit Reliability and Lifetime	58		
Sessio	Session J5: Photonic IC Combining Circuit Design and Technologies (All Invited)			
J5-4	Silicon Photonics for Scaling the Cloud and Enabling AI	62		
J5-5	Design of ultra-high-speed Transmitters Beyond 100Gb/s in CMOS Technology	63		
J5-6	A Silicon Photonics Technology for 400 Gbit/s Applications	64		
Sessio	n D5: Digital IPs for Emerging Applications			
D5-1	A 0.116pJ/bit Latch-Based True Random Number Generator with Static Inverter Selection and Noise Enhancement	65		
D5-2	An 1-bit by 1-bit High Parallelism In-RRAM Macro with Co-Training Mechanism for DCNN Applications	69		
D5-3	A Body Channel Communication Transceiver with a 16x Oversampling CDR and Convolutional Codes	73		
D5-4	An FPGA-Based High-Frequency Trading System for 10 Gigabit Ethernet with a Latency of 433 ns	77		
Sessio	n D6: Hardware-aware DCNN Modeling and Optimization			
D6-1	Hardware-Friendly Progressive Pruning Framework for CNN Model Compression using Universal Pattern Sets	81		
D6-2	Variational Channel Distribution Pruning and Mixed-Precision Quantization for	85		
	Neural Network Model Compression	88		
D6-3	Efficient Segment-wise Pruning for DCNN Inference Accelerators	88		
D6-4	An Embedded CNN Design for Edge Devices Based on Logarithmic Computing	92		
Sessio	n D7: DAT Special Session - High Performance Computing (All Invited)			
D7-1	The Supercomputer "Fugaku"	96		
D7-2	A64FX: 52 Core Processor Designed for the Supercomputer Fugak	97		

Session	n D8: Accelerators for AI Applications and Data Analytics	
D8-1	Configurable Deep Learning Accelerator with Bitwise-accurate Training and Verification	99
D8-2	28-mW Fully Embedded AI Techniques with On-site Learning for Low-Power Handy Tactile Sensing System	103
D8-3	Composite Fault Diagnosis of Rotating Machinery With Collaborative Learning	107
D8-4	Distributed Sorting Architecture on Multiple FPGA	111
Session	n J6: Joint Plenary Session	
J6-2	Semiconductor Evolution for Chip and System Design- From 2D Scaling to 3D Heterogeneous Integration	115
Session	n D9: DAT Special Session - AIoT Security (All Invited)	
D9-1	Challenges and Opportunities in Building Secure IoT Platforms	116
D9-2	Hardware Root-of-Trust Design Based on on-chip PUF for AIoT Applications	117
D9-3	AIoT Security - from the Perspective of a Microcontroller	118
Session	n D10: Industrial Session - EDA for Heterogeneous 2.5D/3D IC Integration (All Invited)	
D10-1	ML-based Fast On-Chip Transient Thermal Simulation for Heterogeneous 2.5D/3D IC Designs	119
D10-2	2.5D & 3DIC Advanced Packaging: An EDA Perspective	127
D10-3	Substrate Signal Routing Solution Exploration for High-Density Packages with Machine Learning	129
Session	n D11: Industrial Session - GaN and SiC Ecosystems for Power and RF Applications (All Invited)	
D11-1	Product Level Design Considerations & Solutions for RF GaN Applications	133
D11-2	Wide Band Gap Devices for Power System	135
D11-3	The Applications of SiC Power Devices in Renewable Energy and EV	137

Author Index