2022 IEEE International Conference on Assured Autonomy (ICAA 2022)

Virtual Conference 22 – 24 March 2022

IEEE Catalog Number: CFP22AH3-POD **ISBN:**

978-1-6654-8540-1

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP22AH3-POD
ISBN (Print-On-Demand):	978-1-6654-8540-1
ISBN (Online):	978-1-6654-8539-5

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE International Conference on Assured Autonomy (ICAA) ICAA 2022

Table of Contents

Preface	viii
Organizing Committee	ix
Program Committee	
Keynotes	
Sponsors	

Al Safety, Assurance, and Machine Learning

On Using Real-Time Reachability for the Safety Assurance of Machine Learning Controllers Patrick Musau (Vanderbilt University, USA), Nathaniel Hamilton (Vanderbilt University, USA), Diego Manzanas Lopez (Vanderbilt University, USA), Preston Robinette (Vanderbilt University, USA), and Taylor T. Johnson (Vanderbilt University, USA)	I
Zero-Shot Policy Transfer in Autonomous Racing: Reinforcement Learning vs Imitation Learning	I
Robustness Assurance Quotient: Demonstrating Context Matters for Al Performance and ML Security	I
A Mapping of Assurance Techniques for Learning Enabled Autonomous Systems to The Systems Engineering Lifecycle	
Resilient Multi-Agent Reinforcement Learning Using Medoid and Soft-Medoid Based Aggregation	5
Selective Classification of Sequential Data Using Inductive Conformal Prediction	ō

Layer-Wise Analysis of Neuron Activation Values for Performance Verification of Artificial	
Neural Network Classifiers	56
Darryl Hond (Thales UK Research, Technology and Innovation, UK), Hamid	
Asgari (Thales UK Research, Technology and Innovation, UK), Leonardo	
Symonds (Thales UK Research, Technology and Innovation, UK), and Mike	
Newman (Thales UK Research, Technology and Innovation, UK)	

Explainable AI, Ethics, and Detection of Disruptive Events

 Explainable Forecasts of Disruptive Events using Recurrent Neural Networks Anna L. Buczak (Johns Hopkins University, Applied Physics Laboratory, USA), Benjamin D. Baugher (Johns Hopkins University, Applied Physics Laboratory, USA), Adam J. Berlier (Johns Hopkins University, Applied Physics Laboratory, USA), Kayla E. Scharfstien (Johns Hopkins University, Applied Physics Laboratory, USA), Kayla E. Scharfstien (Johns Hopkins University), and Christine S. Martin (Johns Hopkins University, Applied Physics Laboratory, USA) 	64
Focusing on the Ethical Challenges of Data Breaches and Applications Karen Joisten (Technical University of Kaiserslautern, Germany), Nicole Thiemer (Technical University of Kaiserslautern, Germany), Tobias Renner (Technical University of Kaiserslautern, Germany), Anke Janssen (Technical University of Kaiserslautern, Germany), and Alexander Scheffler (Faculty of Computer Science, Ruhr University Bochum, Germany)	74

Adversarial Attack Detection and Defense

Adversarial Email Generation Against Spam Detection Models Through Feature Perturbation Qi Cheng (Johns Hopkins University, Baltimore, MD), Anyi Xu (American University, Washington, D.C.), Xiangyang Li (Johns Hopkins University, Baltimore, MD), and Leah Ding (American University, Washington, D.C.)	83
Baltimore, MD), and Leah Ding (American University, Washington, D.C.)	
Discourse of ALVAN Scienchis Chain Multiple with the Automotive Science Deviced Sciences	00

Discovery of AI/ML Supply Chain Vulnerabilities Within Automotive Cyber-Physical Systems 93 Daniel Williams (Johns Hopkins Applied Physics Lab, Laurel, MD), Chelece Clark (Johns Hopkins Applied Physics Lab, Laurel, MD), Rachel McGahan (John Hopkins Applied Physics Lab, Laurel, MD), Bradley Potteiger (John Hopkins Applied Physics Lab, Laurel, MD), Daniel Cohen (John Hopkins Applied Physics Lab, Laurel, MD), and Patrick Musau (Vanderbilt University, USA)

AI Bias and Mitigations

Measuring and Mitigating Bias in Al-Chatbots	
Hedin Beattie (Johns Hopkins University), Lanier Watkins (Johns	
Hopkins University), William H. Robinson (Vanderbit University), Aviel	
Rubin (Johns Hopkins University), and Shari Watkins (American	
University)	

Resilience and Verification in Autonomous Space Systems

Reference Architectures for Autonomous on-Orbit Servicing, Assembly and Manufacturing (OSAM) Mission Resilience	.124
Nathaniel G. Gordon (Johns Hopkins University, United States) and Gregory Falco (Johns Hopkins University, United States)	
Hallmarks of an Autonomous Space System's Development and V&V Martin S. Feather (Jet Propulsion Laboratory, California Institute of Technology, USA)	129

Author Index		137
	 	 107