GeoShanghai 2006

Foundation Analysis and Design Innovative Methods

Proceedings of Sessions of GeoShanghai 2006

Geotechnical Special Publication Number 153

Shanghai, China 6 – 8 June 2006

Editors:

Robert L. Parsons Limin Zhang Wei Dong Guo K. K. Phoon Michael Yang

ISBN: 978-1-7138-5197-4

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2006) by American Society of Civil Engineers All rights reserved.

Printed with permission by Curran Associates, Inc. (2022)

For permission requests, please contact American Society of Civil Engineers at the address below.

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, VA 20191 USA

Phone: (800) 548-2723 Fax: (703) 295-6333

www.asce.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400

Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

Contents

Keynote Paper

Pile Group Settlement Estimation—Research to Practice
Limit State Design in Geotechnical Engineering Practice
A Probabilistic Model for Liquefaction Triggering Analysis Using SPT23 S. Y. Fang, C. H. Juang, and W. H. Tang
Optimization of Composite Piled Raft Foundation with Varied Rigidity of Cushion
Sensitivity Analysis of Settlement of Single Piles
Case-Based Reasoning System for Optimal Decision of Pile Foundation42 Y. Yang
Establishing Serviceability Limit State in the Design of Bridge Foundations49 S. G. Paikowsky and Y. Lu
Progress Towards Harmonized Geotechnical Design in Europe
Statistical Analysis of Kwangyang Marine Clay for Compression Index67 G. L. Yoon, B. T. Kim, Y. W. Yoon, and J. S. Shim
A Statistical Method to Determine Sample Size to Estimate Characteristic Value of Soil Parameters
Characterization of Model Uncertainties for Augered Cast-In-Place (ACIP) Piles under Axial Compression
Cost-Benefit Analysis of Routine Quality Assurance for Bored Piles90 D. Q. Li, L. M. Zhang, and W. H. Tang
A New Narrow-Bound Method for Computing System Failure Probability98 Z. Wu, J. Chen, and B. Wen
Code Calibration of Designing Open-Type Wharf on Vertical Steel Pipe Piles based on the Partial Factor Approach
Variance of the Subgrade Reaction for Estimating the Resistance of a Pile Perpendicular to Pile Axis

K. Lesny	ing to Eurocode 7119
Serviceability Consi L. M. Zhang an	derations in Reliability-Based Foundation Design12' I K. K. Phoon
	Pile Foundations and Drilled Shafts
Discussion on the Be L. Cai, Y. Li, an	earing Capacity of a Bored Pile with Reamed Enlargements13° d H. Zhou
	udy on Pile Responses due to Adjacent Excavation145 R. F. Shen, C. F. Leung, and Y. K. Chow
A New Hyperbolic p D. M. Dewaikar	-y Curve Model for Laterally Loaded Piles in Soft Clay152 and P. A. Patil
of Single Piles	proach for Predicting the Ultimate Bearing Capacity159 ng, L. Rao, and Z. Bi
A Case Study on Los P. Fang, K. Jian	nd Transfer Law of Long Piles in Soft Soil167 g, and X. Zhu
Behavior of Axially : W. D. Guo and !	Loaded Pile Groups Subjected to Lateral Soil Movement174 E. H. Ghee
Installation	nd Pile Embedment Relationships during Driven Pile C. Adams, T. E. Hill, and L. R. Chernauskas
Numerical Modeling L. Laloui and M	of Some Features of Heat Exchanger Pile189
	ect of Jacked Pile on Adjacent Buildings and Roads in Clay195 Zhu, and L. F. Wang
	ools on Rock Socket Roughness in Soft Clay Shale203 /ipulanandan, and Y. Choi
Observed and Predi D. E. Ott and E.	cted Skin Friction Capacity of Auger Cast-in-Place Piles211 C. Drumm
Study on the Interact D. Qian, C. Sun	tion Law between Squeezed Branch Pile and Soil218, and D. Wang
	sign of Piled Raft for 5-Storey Buildings on Very Soft Clay226 Cheah, and M. R. Taha
	on Behavior of Pile Foundation in Lacustrine Deposits Area234 g, K. Wang, and J. Shen
	on Bearing Capacity of Doubled Steel Tubular Piles242 g, H. Akira, and J. Yang
	al Response of Drilled Shafts in Rock249

Lateral Capacity Design of Prestressed High Strength Concrete Piles
in Soft Clay257 W. Zheng and M. M. Petersen
Liquefaction Effects on Lateral Pile Behavior for Bridges
Analysis of Soil Heave Due to Pile-Sinking in Soft Clay271 F. Zhou, J. Zai, G. Mei, and G. Zhou
Development of Negative Skin Friction of Piles on Soft Ground277 W. Zhou, R. Chen, and Y. Chen
The Origin, Application, and Development of Piles in China285 P. Shi, S. Bao, and H. Yin
Prediction of Ground Displacement and Deformation Induced by Large Diameter Piles293
S. Qiao, L. Fang, and B. Liu
Examining Productivity of Foundation Construction
Stress and Safety Analysis of Pile Based on the Unified Strength Theory308 L. Cao, J. Zhao, X. Wei, and L. Ji
Analysis of Settlement of Pile Foundations for the High-Speed Rail315 Z. Lin and Z. Zhou
Shallow Foundations
A New Method for Calculating the Final Settlement of Soft Clay Ground—The Geometric Progression Method
Optimization Forecasting Model of Foundation Settlement Based on Grey Model Groups
Parameter Estimation for Settlement Prediction Model Using Bayesian Inference Approach
Indexes
Subject Index343
Author Index345