GeoShanghai 2006

Site and Geomaterial Characterization

Proceedings of Sessions of GeoShanghai 2006

Geotechnical Special Publication Number 149

Shanghai, China 6 – 8 June 2006

Editors:

Anand J. Puppala Dante Fratta

Khalid Alshibli Sibel Pamukcu

ISBN: 978-1-7138-5193-6

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (2006) by American Society of Civil Engineers All rights reserved.

Printed with permission by Curran Associates, Inc. (2022)

For permission requests, please contact American Society of Civil Engineers at the address below.

American Society of Civil Engineers 1801 Alexander Bell Drive Reston, VA 20191 USA

Phone: (800) 548-2723 Fax: (703) 295-6333

www.asce.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400

Fax: 845-758-2633

Email: curran@proceedings.com Web: www.proceedings.com

Contents

Opening Plenary Session: General Theme Lecture	
New Frontiers in Geotechnical Engineering—Challenges and Opportunities	1
Special Session to Honor Prof. Mehmet T. Tumay	
Correlating q_c and Cyclic Resistance of a Silty Sand through Laboratory Calibration Tests	6
Interpretation of CPTU Tests Carried Out in Lacustrine Mexico City Soft Clay2 I. R. Cruz and P. W. Mayne	4
Hydraulic Conductivity Interpretation Using Piezocone Results3 C. R. Song and S. Pulijala	2
Texas Cone Penetrometer (TCP) Correlations for Strength Predictions of Low Compressibility Clays4 Hariharan Vasudevan, Anand J. Puppala, Mien Jao, Cumaraswamy Vipulanandan, and Stanley Yin	0
Innovations in Cone Penetration Testing4 P. U. Kurup	8
Status of Consolidation from Incomplete Piezocone Dissipation Tests5 B. S. Lim, M. T. Tumay, and D. D. Seo	6
A Cavity Expansion Model and Its Interpretation towards Field Testing of Inclined Penetrations	4
Brillouin Scattering Fiber Optic Sensor for Distributed Measurement of Liquid Content and Geosynthetic Strains in Subsurface	2
Use of Stiffness and Strength for Earthwork Quality Evaluation8 T. B. Edil and A. Sawangsuriya	0
Non-Destructive Characterization of Geomaterials	
Internal Characterization of Geomaterials: Computed Tomography and Digital Imaging	
Applications of Computed Tomography (CT) to Characterize the Internal Structure of Geomaterials: Limitations and Challenges	8
Characterization of Soil Porosity using X-Ray Computed Tomography9 Robert L. Mokwa and Brent Nielsen	6

Void Distributions in Samples of a Granular Material	104
Image Analysis of Red Sandstone Damage and Deformation	112
Experimental Observation of Shear Deformation Patterns in Sands Using Digital Photogrammetry Yuan-hai Li, He-hua Zhu, and Hong-wen Jing	120
Principles and Applications of Digital Photogrammetry for Geotechnical Engineering Lisa J. Cleveland and Joseph Wartman	128
Evaluation of Properties and Processes: Wave Propagation Techniques	
Usefulness of EM Waves for Site and Soil Property Characterization in Geotechnical Engineering	136
Soil Type Identification by Time Domain Dielectric Spectroscopy—Theoretical Basis and Preliminary Results Xiong Yu, Vincent P. Drnevich, and Robert L. Nowack	144
Time Domain Reflectometry for Automatic Bridge Scour Monitoring	152
Dimensionless Limits for the Collection and Interpretation of Wave Propagation Data in Soils A. Sawangsuriya, E. Biringen, D. Fratta, P. J. Bosscher, and T. B. Edil	160
Wave-Based Characterizations of Sand Behavior under the K₀-Condition Xiaobo Dong and Yu-Hsing Wang	167
Monitoring Chemical Diffusion in a Porous Media Using Electrical Resistivity Tomography V. Damasceno and D. Fratta	174
Construction Characterization and Monitoring: Seismic Geophysical Techniques	
Nondestructive Quality Control of Geo-Materials Using Seismic Methods	182
Comparison of Surface-Wave Techniques in the Spatial Profiling of Subsurface Stiffness	188
Determination of Shear Wave Velocity Profile of Sedimentary Deposits in Bam City (Southeast of Iran) Using Microtremor Measurements	196
Comparative Study of Field Seismic Tests at a Multi-Layered Model Testing Site D. S. Kim, J. T. Kim, E. S. Bang, H. J. Park, and H. C. Park	204
Comparison of Three Surface Wave Measurements and a Seismic Downhole Measurement in a Complex-Layered System X Jin and B Luke	212

In-Situ Characterization Methods

Cone Penetration Test Methods

A Review of the State-of-the-Art of Cone Penetration Test in China and Its Further Development Liyuan Tong, Songyu Liu, Guangyin Du, and Guojun Cai	220
Application of CPT Cone Resistance for Footing Bearing Capacity Estimation Jun-Hwan Lee and Rodrigo Salgado	230
Effect of Travel Path in the SCPT Test Method	236
A Global Statistical Correlation between Shear Wave Velocity and Cone Penetration Data Yasser A. Hegazy and Paul W. Mayne	243
Estimating Overconsolidation Ratio and Lateral Stress Coefficient Using Neural Networks	240
P. U. Kurup and E. P. Griffin	····· <i>4</i> ·7
Evaluating Footing Response from Seismic Piezocone Tests	255
Other In-Situ Methods and Numerical Modelling	
Characterization of Stiff Residual Soils with Dynamically Push-In DMT Nuno Cruz and António Viana da Fonseca	261
Numeric Modeling of the Flat Dilatometer Test	269
Intelligent Continuity Method of Site Classification and Characteristic Period	277
Dynamic Cone Penetrometer to Evaluate Unconfined Compressive Strength of Stabilized Soils	285
In-Situ Borehole Shear Test and Rock Borehole Shear Test for Slope Investigation	293
Hong Yang, David J. White, and Vernon R. Schaefer	
In Situ Determination of the Short-Term Mechanical Behaviors of Soft Clay with the Pressuremeter	299
The Application of Underwater Pressuremeter Test to In-Situ Testing of Bridge Foundation	305
Q. S. Meng, R. Wang, and L. W. Kong	
Indexes	
Subject Index	313
Author Index	315