2022 International Conference on Computer Science and Software Engineering (CSASE 2022)

Duhok, Iraq 15 – 17 March 2022

IEEE Catalog Number: CFP22V67-POD **ISBN:**

978-1-6654-2633-6

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP22V67-POD
ISBN (Print-On-Demand):	978-1-6654-2633-6
ISBN (Online):	978-1-6654-2632-9

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 International Conference on Computer Science and Software Engineering (CSASE)

Table of Contents

No	Title of the Paper	Pages
1	A Survey for Using AI Techniques for Predicting COVID-19	1 - 6
2	A Novel Simple 6D Hyperchaotic System with Hidden Attractors	7 – 12
3	Hybrid Function Projective Synchronization via a Nonlinear Control	13 – 18
4	<i>Dynamic Power Reduction in Huffman Design using</i> 130 nm Technology Library	19 – 23
5	Comparative Analysis of AI-powered Approaches for Skeleton-based Child and Adult Action Recognition in Multi-person Environment	24 – 29
6	A Comprehensive Review for Video Anomaly Detection on Videos	30 - 35
7	Improved Security of SDN based on Hybrid Quantum Key Distribution Protocol	36 - 40
8	Design of an IoT Based Monitoring System for Expectant Rural Women in Developing Countries	41 - 47
9	<i>Optimal Path Selection for a Universal Relation</i> <i>View of Relational Databases</i>	48 - 53
10	Modeling and Simulation of Data Dissemination in VANET Based on a Clustering Approach	54 - 59
11	<i>Evaluating the Performance of ID3 Method to Analyze and Predict Students' Performance in Online Platforms</i>	60 - 64
12	A New Simple 4D Hyperchaotic Sprott-B System with Seven-Terms	65 – 70
13	Facial Emotion Classification of Multi-Type Datasets based on SVM Classifier	71 – 76
14	A Survey on Internet of Things (IoT) Testing	77 – 83
15	Design of a Compact MIMO Antenna for Wireless Communication Applications	84 - 88
16	Performance Evaluation of RSA, ElGamal, and Paillier Partial Homomorphic Encryption Algorithms	89 - 94
17	A Review of the Impairments and Challenges of Radio over Fiber Technology and their Mitigation Strategies	95 – 100
18	Facial Expression Recognition using Transfer Learning and Fine-tuning Strategies: A Comparative Study	101 – 106
19	ECOVIDNET Snapshot Ensembling Approach to Detect Coronavirus from Chest X-ray Images	107 - 112

20	Enterprise Architecture Approach to Build API Economy	113 – 120
21	Sentiment analysis of Twitter data during Farmers' Protest in India through Machine Learning	121 - 126
22	A Numerical Study for Solving Unconstrained Optimization Problems Using Method of Three-Term Conjugate Gradient	127 – 131
23	Improved Fragile Watermarking Technique Using Modified LBP Operator	132 – 137
24	<i>RF-Chains Reduction by Beamspace MIMO to Achieve</i> <i>Near-Optimal Performance: An Overview</i>	138 – 143
25	Beamspace-MIMO-NOMA Enhanced mm-Wave Wireless Communications Performance Optimization	144 – 150
26	An Efficient Beamforming Design for Reflective Intelligent Surface-Aided Communications System	151 – 156
27	Design and Simulation of Intelligent Maximum Power Point Tracking (MPPT) based on Fuzzy Logic Controller for PV System	157 – 162
28	Design and Analysis of Optical Frequency Comb Generator Employing EAM	163 – 167
29	Deep Learning Approach for Real-time Video Streaming Traffic Classification	168 - 174
30	Methods and Applications of Augmented Reality in Education: A Review	175 – 181
31	Software Development Effort Estimation Techniques Using Long Short Term Memory	182 - 187
32	Integrated Different Fingerprint Identification and Classification Systems based Deep Learning	188 – 193
33	Chaotic Dynamics for VCSEL Subjected to Time Delayed and Filtered Injection Using FBG Array Sensor	194 – 200
34	Optimization Algorithms used in Cognitive Radio Networks: An Overview	201 - 206
35	A Nonlinear Transformation Methods Using Covid-19 Data in the Kurdistan Region	207 - 211
36	Several Predictions for Protein Secondary Structure by Multiple-Trained Hidden Markov Models	212 - 217
37	<i>Hybrid Binary Atom Search Optimization Approaches</i> <i>with Statistical Dependence for Feature Selection</i>	218 - 223
38	<i>Emotions on Edge - the Dependence of Different</i> <i>Characteristics of the Convolutional Neural Network</i> <i>on the Number of Classes</i>	224 – 229
39	Design and Development of a Real-Time Traffic Congestion Analysis System	230 - 235

40	Computational Technique for the Modeling on MHD	226 240
40	Boundary Layer Flow Unsteady Stretching Sheet by B-	236 - 240
41	Spline Function	241 246
41	Lightweight Authentication Methods in IoT- Survey	241 - 246
12	Machine Learning Classification Techniques to Predict	247 252
42	Directional Change of Energy Prices Using High	247 – 252
	Dimensionality Reduction	
43	Suspicious Region Segmentation Using Deep Features	253 - 258
	in Breast Cancer Mammogram Images	
44	Knee Osteoarthritis Detection Using Deep Feature	259 - 264
	Based on Convolutional Neural Network	
45	Face Detection and Recognition Techniques Analysis	265 - 270
	A Lightweight Hybrid Cryptographic Algorithm for	
46	WSNs Tested by the Diehard Tests and the Raspberry	271 - 276
	Pi	
47	Gene Expression Microarray Data Classification	277 - 282
	based on PCA and Cuttlefish Algorithm	
48	A New Simple No-Equilibrium 4D Hyperchaotic	283 - 288
	System with an Exponential Nonlinear Term	
49	Breast Cancer- Breast Tumor Detection Using Deep	289 - 294
.,	Transfer Learning Techniques in Mammogram Images	
50	Extracting and Archiving Data from Social Media to	295 - 300
	Support Cultural Heritage Preservation in Nineveh	
51	Portable Modeling for ICU IoT-based Application	301 - 305
	using TOSCA on the Edge and Cloud	
52	Prioritization of Medical Data Transmission over IoT	306 - 311
	Environment	
53	A Review on Medical Image Compression and	312 - 318
	Encryption Using Compressive Sensing	
54	Internet Routing Anomaly Detection Using LSTM	319 - 324
	Based Autoencoder	
==	Lightweight Modifications in the Advanced Encryption	225 220
55	Standard (AES) for IoT Applications: A Comparative	325 - 330
	Survey	
56	Convolutional Neural Network GoogleNet Architecture	331 - 336
	for Detecting the Defect Tire	
57	An Enhanced ElGamal Cryptosystem for Image	337 - 342
	Encryption and Decryption	
58	Fractional Spline Model for Computing Fredholm	343 - 347
	Integral Equations	
59	Mind Controlled Educational Robotic Toys for	348 - 354
	Physically Disabled Children: A Survey	
60	Smart Homes Powered by Machine Learning: A Review	355 - 361
61	DDOS Attack Detection Using Lightweight Partial	362 - 367
	Decision Tree algorithm	

62	Development of Multipath Dynamic Address Routing Protocol in MANET to Improve Data Transfer in Poor Infrastructure Environment	368 - 373
63	Using Power Transformations in Response Surface Methodology	374 – 379