2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS 2021)

Hainan, China 6 – 10 December 2021

Pages 1-554

IEEE Catalog Number: CFP21C33-POD **ISBN:**

978-1-6654-5814-6

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21C33-POD
ISBN (Print-On-Demand):	978-1-6654-5814-6
ISBN (Online):	978-1-6654-5813-9
ISSN:	2693-9185

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS) QRS 2021

Table of Contents

Message from the QRS 2021 Steering Committee Chairs, General Chairs, and	d Program Chairs
	xviii
Steering Committee	xxi
Organizing Committee	xxii
Program Committee	xxiv
Chairs of Workshops Co-Located with QRS 2021	xxviii
Keynote Speakers	xxxi

System and Software Security

A Novel Method to Prevent Multiple Withdraw Attack on ERC20 Tokens Jin-lei Sun (Army Engineering University of PLA, China), Song Huang (Army Engineering University of PLA, China), Chang-you Zheng (Army Engineering University of PLA, China), Mei-juan Wang (Army Engineering University of PLA, China), Zhan-wei Hui (Academy of Military Science, China), and Yi-xian Ding (Liaoning Technical University, China)	1
Analyzing Structural Security Posture to Evaluate System Design Decisions Joe Samuel (Carleton University, Canada), Jason Jaskolka (Carleton University, Canada), and George O. M. Yee (Carleton University, Canada; Aptusinnova Inc., Canada)	8
Cryptography Vulnerabilities on HackerOne	8
CTScopy: Hunting Cyber Threats within Enterprise via Provenance Graph-Based Analysis	8

DeepDetect: A Practical On-Device Android Malware Detector
Dynamic Interval-Based Watermarking for Tracking Down Network Attacks
EcoAndroid: An Android Studio Plugin for Developing Energy-Efficient Java Mobile Applications
(University of Lisbon, Portugal), and Alexandra Mendes (Universidade da Beira Interior, Portugal)
 Explainable APT Attribution for Malware Using NLP Techniques
 Impact of Datasets on Machine Learning Based Methods in Android Malware Detection: An Empirical Study
Security Header Fields in HTTP Clients
Security-Aware Multi-User Architecture for IoT
Sound Predictive Atomicity Violation Detection
Strategies for Reducing Traffic Volume and Security on Smart Grid
The Security Risk of Lacking Compiler Protection in WebAssembly

Software Testing and Verification

A Framework for Progressive Regression Testing PLC Programs	0
A Tool to Support Vibration Testing Method for Automatic Test Case Generation and Test Result Analysis	9
Kenya Saiki (Hiroshima University, Japan), Shaoying Liu (Hiroshima University, Japan), Hiroyuki Okamura (Hiroshima University, Japan), and Tadashi Dohi (Hiroshima University, Japan)	
An Empirical Study on Test Case Prioritization Metrics for Deep Neural Networks	7
Analysis of Road Representations in Search-Based Testing of Autonomous Driving Systems 16 Ezequiel Castellano (National Institute of Informatics, Japan), Ahmet Cetinkaya (National Institute of Informatics, Japan), and Paolo Arcaini (National Institute of Informatics, Japan)	7
 Application of Combinatorial Testing to Quantum Programs	9
Automated Testing of Android Applications Integrating Residual Network and Deep Reinforcement Learning	Э
DroidGamer: Android Game Testing with Operable Widget Recognition by Deep Learning 197 Bo Jiang (Beihang University, China), Wenlin Wei (Beihang University, China), Li Yi (Beihang University, China), and W.K. Chan (City University of Hong Kong, Hong Kong)	7
 Evaluating and Improving Static Analysis Tools via Differential Mutation Analysis	7

HARS: Heuristic-Enhanced Adaptive Randomized Scheduling for Concurrency Testing
 Historical Information Stability Based Reward for Reinforcement Learning in Continuous Integration Testing
 Increasing Fuzz Testing Coverage for Smart Contracts with Dynamic Taint Analysis
 MMFC-ART: A Fixed-Size-Candidate-Set Adaptive Random Testing Approach Based on the Modified Metric-Memory Tree
On Assessing the Safety of Reinforcement Learning Algorithms Using Formal Methods
On the Automation of Audio Plugin Testing
 OPE: Transforming Programs with Clean and Precise Separation of Tested Intraprocedural Program Paths with Path Profiling
REST API Fuzzing by Coverage Level Guided Blackbox Testing
SQDroid: A Semantic-Driven Testing for Android Apps via Q-Learning

TAF: A Tool for Diverse and Constrained Test Case Generation Clément Robert (Université de Toulouse, France), Jérémie Guiochet (Université de Toulouse, France), Hélène Waeselynck (Université de Toulouse, France), and Luca Viitorio Sartori (Université de Toulouse, France)	311
Target Code-Coverage and Efficiency in APP Automatic Compatibility Testing Based on Code Analysis	322
Sen Yang (Army Engineering University of PLA, China), Yifan Huang (Illinois Institute of Technology, USA), Song Huang (Army Engineering University of PLA, China), Zhanwei Hui (Academy of Military Sciences, China), and Changyou Zheng (Army Engineering University of PLA, China)	
Test Benchmarks: Which One Now and in Future? Cyrille Artho (KTH Royal Institute of Technology, Sweden), Adam Benali (KTH Royal Institute of Technology, Sweden), and Rudolf Ramler (Software Competence Center Hagenberg, Austria)	328
Unit Crowdsourcing Software Testing of Go Program Run Luo (Guangzhou GRG Metrology & Test Co., Ltd.; Army Engineering University of PLA, China), Song Huang (Army Engineering University of PLA, China), MeiJuan Wang (Army Engineering University of PLA, China), JinChang Hu (Army Engineering University of PLA, China), and JinHu Du (Army Engineering University of PLA, China)	337

Software Reliability and Defect Analysis

A Simulation Based Intelligent Analysis Framework of Aircraft Reliability, Resilience and Vulnerability	1 7
Dynamic Detection of AsyncTask Related Defects	57
 Heterogeneous Defect Prediction through Joint Metric Selection and Matching	57
Multiple Error Types Software Belief Reliability Growth Model Based on Uncertain Differential Equation	'8
Platform Software Reliability for Cloud Service Continuity—Challenges and Opportunities 38 Ning Luo (Intel Asia-Pacific Research & Development Ltd., China) and Yue Xiong (Intel Asia-Pacific Research & Development Ltd., China)	38

Reliability and Quality Assurance

A Deep Method Renaming Prediction and Refinement Approach for Java Projects
An Online Model Integration Framework for Server Resource Workload Prediction
Automated Cause Analysis of Latency Outliers Using System-Level Dependency Graphs
 Automatic Adaptation of Reliability and Performance Trade-Offs in Service- and Cloud-Based Dynamic Routing Architectures
Automatic Identification of High Impact Bug Report by Test Smells of Textual Similar Bug Reports
 ConLAR: Learning to Allocate Resources to Docker Containers under Time-Varying Workloads 458 Diwei Chen (Shanghai Jiao Tong University, China), Beijun Shen (Shanghai Jiao Tong University, China), and Yuting Chen (Shanghai Jiao
Tong University, China) eCPDP: Early Cross-Project Defect Prediction
EPR: A Neural Network for Automatic Feature Learning from Code for Defect Prediction 482 Dingbang Fang (Hiroshima University, Japan), Shaoying Liu (Hiroshima University, Japan), and Ai Liu (Hiroshima University, Japan)

Estimating the Attack Surface from Residual Vulnerabilities in Open Source Software Supply Chain
Dapeng Yan (Nanjing University of Aeronautics and Astronautics, China), Kui Liu (Nanjing University of Aeronautics and Astronautics, China), Zhiming Liu (Southwest University, China), Yuqing Niu (Nanjing University of Aeronautics and Astronautics, China), Zhe Liu (Nanjing University of Aeronautics and Astronautics, China), and Tegawende F. Bissyande (SnT, University of Luxembourg, Luxembourg)
 Heterogeneous Defect Prediction through Correlation-Based Selection of Multiple Source Projects and Ensemble Learning
Identification of Compromised IoT Devices: Combined Approach Based on Energy Consumption and Network Traffic Analysis
Predictors of Software Metric Correlation: A Non-Parametric Analysis
Reliability of Centralized vs. Parallel Software Models for Composable Storage Systems 534 Mario Blaum (IBM Research Division-Almaden, USA) and Paul Muench (IBM Research Division-Almaden, USA)
Software Defect Prediction via Multi-Channel Convolutional Neural Network
The Bidirectional Safety Analysis & Validation Framework of System and Software with Its Techniques and Applications
W-SRAT: Wavelet-Based Software Reliability Assessment Tool

Program Debugging and Vulnerability Analysis

A Possibilistic Evolutionary Approach to Handle the Uncertainty of Software Metrics	
Thresholds in Code Smells Detection	574
Sofien Boutaib (University of Tunis, Tunisia), Maha Elarbi (University	
of Tunis, Tunisia), Slim Bechikh (University of Tunis, Tunisia), Fabio	
Palomba (University of Salerno, Italy), and Lamjed Ben Said	
(University of Tunis, Tunisia)	

CONFUZZION: A Java Virtual Machine Fuzzer for Type Confusion Vulnerabilities	86
 Exception-Driven Fault Localization for Automated Program Repair	98
Fuzzing Deep Learning Models against Natural Robustness with Filter Coverage	08
Practical Online Debugging of Spark-Like Applications	20
SSpinJa: Facilitating Schedulers in Model Checking	32
Time-Traveling Debugging Queries: Faster Program Exploration	42
Towards More Reliable Automated Program Repair by Integrating Static Analysis Techniques 69 Omar I. Al-Bataineh (Simula Research Laboratory, Norway), Anastasiia Grishina (Simula Research Laboratory, Norway), and Leon Moonen (Simula Research Laboratory, Norway)	54
Vulnerability Analysis of Similar Code	64

Fault Localization and Debugging

AGFL: A Graph Convolutional Neural Network-Based Method for Fault Localization Jie Qian (Nantong University, China), Xiaolin Ju (Nantong University, China), Xiang Chen (Nantong University, China), Hao Shen (Nantong University, China), and Yiheng Shen (Nantong University, China)	672
CBFL: Improving Software Fault Localization by Analyzing Statement Complexity Haoren Wang (Beijing Information Science and Technology University, China), Haochen Jin (Beijing Information Science and Technology University, China), Zhanqi Cui (Beijing Information Science and Technology University, China), and Rongcun Wang (China University of Mining and Technology, China)	. 681

Improving Quality of Counterexamples in Model Checking via Automated Planning Xu Lu (Xidian University, China), Cong Tian (Xidian University, China), Bin Yu (Xidian University, China), and Zhenhua Duan (Xidian University, China)	691
Sdft: A PDG-Based Summarization for Efficient Dynamic Data Flow Tracking Xiao Kan (Xidian University, China), Cong Sun (Xidian University, China), Shen Liu (NVIDIA, USA), Yongzhe Huang (Pennsylvania State University, USA), Gang Tan (Pennsylvania State University, USA), Siqi Ma (University of Queensland, Australia), and Yumei Zhang (Xidian University, China)	702
Towards Repairing Neural Networks Correctly Guoliang Dong (Zhejiang University, China), Jun Sun (Singapore Management University, Singapore), Xingen Wang (Zhejiang University, China), Xinyu Wang (Zhejiang University, China), and Ting Dai (Huawei International Pte. Ltd., Singapore)	714

Al for Software Engineering

A Novel API Recommendation Approach by Using Graph Attention Network
A Novel Tree-Based Neural Network for Android Code Smells Detection
A Protocol-Based Intrusion Detection System Using Dual Autoencoders
ACLM: Software Aging Prediction of Virtual Machine Monitor Based on Attention Mechanism of CNN-LSTM Model
An Efficient Network Intrusion Detection Model Based on Temporal Convolutional Networks . 768 Jinfu Chen (Jiangsu University, China), Shang Yin (Jiangsu University, China), Saihua Cai (Jiangsu University, China), Chi Zhang (Jiangsu University, China), Yemin Yin (Jiangsu University, China), and Ling Zhou (Jiangsu University, China)
Applying a Deep-Learning Approach to Predict the Quality of Web Services
DG-Trans: Automatic Code Summarization via Dynamic Graph Attention-Based Transformer . 786 Jianwei Zeng (Macau University of Science and Technology, China), Tao Zhang (Macau University of Science and Technology, China), and Zhou Xu (Macau University of Science and Technology, China)

Event Stream Classification with Limited Labeled Data for E-Commerce Monitoring Alexander Zimin (Amazon.com, Inc., USA), Igor Mishchenko (Amazon.com, Inc., USA), and Rebecca Steinert (Amazon.com, Inc., USA)	796
Generating Adversarial Examples of Source Code Classification Models via Q-Learning-Based Markov Decision Process Junfeng Tian (Hebei University, China), Chenxin Wang (Hebei University, China), Zhen Li (Hebei University, China), and Yu Wen (Hebei University, China)	807
GrasP: Graph-to-Sequence Learning for Automated Program Repair Ben Tang (Yangzhou University, China), Bin Li (Yangzhou University, China), Lili Bo (Yangzhou University, China), Xiaoxue Wu (Yangzhou University, China), Sicong Cao (Yangzhou University, China), and Xiaobing Sun (Yangzhou University, China)	819
Hunter in the Dark: Discover Anomalous Network Activity Using Deep Ensemble Network Shiyi Yang (University of New South Wales, Australia), Hui Guo (University of New South Wales, Australia), and Nour Moustafa (University of New South Wales, Australia)	829
MINTS: Unsupervised Temporal Specifications Miner Pradeep K. Mahato (University of British Columbia, Canada) and Apurva Narayan (University of British Columbia, Canada)	841
Multilevel Traceability Links Establishments between SOFL Formal Specifications and Java Codes Using Multi-Dimensional Similarity Measures Jiandong Li (Hiroshima University, Japan), Shaoying Liu (Hiroshima University, Japan), Ai Liu (Hiroshima University, Japan), and Runhe Huang (Hosei University, Japan)	852
On the Effects of Data Sampling for Deep Learning on Highly Imbalanced Data from SCADA Power Grid Substation Networks for Intrusion Detection <i>Wotawa Franz (Graz University of Technology, Austria) and Mühlburger</i> <i>Herbert (Graz University of Technology, Austria)</i>	864
Recovering Semantic Traceability between Requirements and Source Code Using Feature Representation Techniques Meng Zhang (Nanjing University of Aeronautics and Astronautics, China), Chuanqi Tao (Nanjing University of Aeronautics and Astronautics, China; Nanjing University, China; Collaborative Innovation Center of Novel Software Technology and Industrialization, China), Hongjing Guo (Nanjing University of Aeronautics and Astronautics, China), and Zhiqiu Huang (Nanjing University of Aeronautics and Astronautics, China; Collaborative Innovation Center of Novel Software Technology and Industrialization, China)	873

Models and Algorithms

An Effective Crowdsourced Test Report Clustering Model Based on Sentence Embedding888 Hao Chen (Army Engineering University of PLA, China), Song Huang (Army Engineering University of PLA, China), Yuchan Liu (Army Engineering University of PLA, China), Run Luo (Army Engineering University of PLA, China), and Yifei Xie (Army Engineering University of PLA, China)
An Incomplete Unsatisfiable Cores Extracting Algorithm to Promote Routing
 Hybrid Collaborative Filtering-Based API Recommendation
ReDefender: A Tool for Detecting Reentrancy Vulnerabilities in Smart Contracts Effectively 915 Zhenyu Pan (Southeast University, China), Tianyuan Hu (Southeast University, China), Chen Qian (Southeast University, China), and Bixin Li (Southeast University, China)
 WANA: Symbolic Execution of Wasm Bytecode for Extensible Smart Contract Vulnerability Detection

Empirical Study

A Preliminary Investigation of Developer Profiles Based on Their Activities and Code	
Quality: Who Does What?	938
Cristina Aguilera González (Universitat Politècnica de Catalunya,	
Spain), Laia Albors Zumel (Universitat Politècnica de Catalunya,	
Spain), Jesús Antoñanzas Acero (Universitat Politècnica de Catalunya,	
Spain), Valentina Lenarduzzi (LUT University, Finland), Silverio	
Martínez-Fernández (Universitat Politècnica de Catalunya, Spain), and	
Sonia Rabanaque Rodríguez (Universitat Politècnica de Catalunya,	
Spain)	

Accept or Not? An Empirical Study on Analyzing the Factors That Affect the Outcomes of Modern Code Review
Dandan Wang (Institute of Software, Chinese Academy of Sciences, China), Qing Wang (Institute of Software, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Junjie Wang (Institute of Software, Chinese Academy of Sciences, China), and Lin Shi (Institute of Software, Chinese Academy of Sciences, China)
 Analyzing Software Security-Related Size and Its Relationship with Vulnerabilities in OSS 956 Elaine Venson (University of Southern California, USA), Ting Fung Lam (University of Southern California, USA), Bradford Clark (Software Metrics Inc., USA), and Barry Boehm (University of Southern California, USA)
Analyzing the Impact of Cyberattacks on Industrial Control Systems Using Timed Automata 966 Alvi Jawad (Carleton University, Canada) and Jason Jaskolka (Carleton University, Canada)
Are the Scala Checks Effective? Evaluating Checks with Real-World Projects
Evaluating Code Summarization with Improved Correlation with Human Assessment
Log Severity Levels Matter: A Multivocal Mapping
Mapping Breakpoint Types: An Exploratory Study
Multi-Agent Automata and Its Application to LDLK Satisfiability Checking

On Understanding Contextual Changes of Failures	6
Phish What You Wish	8
Research on Mining of Government Data Based on Enhanced-Object Exchange Model 106 Kejin Sa (National Engineering Laboratory, China), Yu Bai (Harbin Engineering University, China), and Chenggang Wang (Southwest China Institute of Electronic Technology, China)	0
 SRTEF: Automatic Test Function Recommendation with Scenarios for Implementing Stepwise Test Case	9
The Challenge of Reproducible ML: An Empirical Study on the Impact of Bugs	9
The Relation between Bug Fix Change Patterns and Change Impact Analysis	9
Understanding the Resilience of Neural Network Ensembles against Faulty Training Data 110 Abraham Chan (University of British Columbia, Canada), Niranjhana Narayanan (University of British Columbia, Canada), Arpan Gujarati (University of British Columbia, Canada), Karthik Pattabiraman (University of British Columbia, Canada), and Sathish Gopalakrishnan (University of British Columbia, Canada)	0

Author Index