2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2022)

Waikoloa, Hawaii, USA 3 – 8 January 2022

Pages 1-686

IEEE Catalog Number: CFP22082-POD **ISBN:**

978-1-6654-0916-2

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP22082-POD
978-1-6654-0916-2
978-1-6654-0915-5
2472-6737

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) WACV 2022

Table of Contents

Message from the General and Program Chairs	xlv
Organizing Committee and Area Chairs	xlvi
Sponsors and Corporate Donors	xlvii

Computational Photography and Image Processing I

Evaluation of Correctness in Unsupervised Many-to-Many Image Translation	l
Fast and Explicit Neural View Synthesis	
 Training a Task-Specific Image Reconstruction Loss	
GANs Spatial Control via Inference-Time Adaptive Normalization	1
Single-Photon Camera Guided Extreme Dynamic Range Imaging	
Extracting Vignetting and Grain Filter Effects From Photos	<u>></u>
 High Dynamic Range Imaging of Dynamic Scenes With Saturation Compensation but Without Explicit Motion Compensation	I

HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy Rate Segmentation
 Improving Single-Image Defocus Deblurring: How Dual-Pixel Images Help Through Multi-Task Learning Abdullah Abuolaim (York University), Mahmoud Afifi (Apple), and Michael S. Brown (York University)
 Image Restoration by Deep Projected GSURE
Non-Blind Deblurring for Fluorescence: A Deformable Latent Space Approach With Kernel Parameterization
Controlled GAN-Based Creature Synthesis via a Challenging Game Art Dataset – Addressing the Noise-Latent Trade-Off

Action and Pose

Hierarchical Modeling for Task Recognition and Action Segmentation in Weakly-Labeled Instructional Videos Reza Ghoddoosian (University of Texas at Arlington), Saif Sayed (University of Texas at Arlington), and Vassilis Athitsos (University of Texas at Arlington)	. 120
Quantified Facial Expressiveness for Affective Behavior Analytics Md Taufeeq Uddin (University of South Florida) and Shaun Canavan (University of South Florida)	.131
Pose and Joint-Aware Action Recognition Anshul Shah (Johns Hopkins University), Shlok Mishra (University of Maryland College Park), Ankan Bansal (Amazon.com), Jun-Cheng Chen (Academia Sinica), Rama Chellappa (Johns Hopkins University), and Abhinav Shrivastava (University of Maryland)	. 141
Equine Pain Behavior Classification via Self-Supervised Disentangled Pose Representation Maheen Rashid (Univrses AB), Sofia Broomé (KTH Royal Institute of Technology), Katrina Ask (Swedish University of Agricultural Sciences), Elin Hernlund (Swedish University of Agricultural Sciences), Pia Haubro Andersen (Swedish University of Agricultural Sciences), Hedvig Kjellström (KTH Royal Institute of Technology), and Yong Jae Lee (University of California, Davis)	. 152

Domain Generalization Through Audio-Visual Relative Norm Alignment in First Person Action Recognition	53
 SSCAP: Self-Supervised Co-Occurrence Action Parsing for Unsupervised Temporal Action Segmentation	75
Charless Fowlkes (UC Irvine)	
Multi-Stream Dynamic Video Summarization	35
SporeAgent: Reinforced Scene-Level Plausibility for Object Pose Refinement	96
A Structure-Aware Method for Direct Pose Estimation)5

3D Computer Vision I

Stylizing 3D Scene via Implicit Representation and HyperNetwork
SIDE: Center-Based Stereo 3D Detector With Structure-Aware Instance Depth Estimation 225 Xidong Peng (Shanghaitech University), Xinge Zhu (The Chinese University of Hong Kong), Tai Wang (The Chinese University of Hong Kong), and Yuexin Ma (ShanghaiTech University)
Learning To Reconstruct 3D Non-Cuboid Room Layout From a Single RGB Image
Single-Shot Dense Active Stereo With Pixel-Wise Phase Estimation Based on Grid-Structure Using CNN and Correspondence Estimation Using GCN
EllipsoidNet: Ellipsoid Representation for Point Cloud Classification and Segmentation

 What Makes for Effective Few-Shot Point Cloud Classification?
Mending Neural Implicit Modeling for 3D Vehicle Reconstruction in the Wild
 HybVIO: Pushing the Limits of Real-Time Visual-Inertial Odometry
Occlusion Resistant Network for 3D Face Reconstruction
StickyLocalization: Robust End-to-End Relocalization on Point Clouds Using Graph Neural Networks
Kai Fischer (Valeo), Martin Simon (Valeo), Stefan Milz (Spleenlab GmbH), and Patrick Mäder (Technische Universität Ilmenau)
Symmetric-Light Photometric Stereo
Lightweight Monocular Depth With a Novel Neural Architecture Search Method

Transfer, Few-shot, Semi-, and Un- Supervised Learning I

Knowledge Capture and Replay for Continual Learning Saisubramaniam Gopalakrishnan (Institute for Infocomm Research, A*STAR), Pranshu Ranjan Singh (Institute for Infocomm Research, A*STAR), Haytham Fayek (RMIT), Savitha Ramasamy (I2R A*STAR), and ArulMurugan Ambikapathi (ASTAR-Institute for Infocomm Research, A*STAR)	337
Meta-Learning for Multi-Label Few-Shot Classification Christian Simon (Australian National University), Piotr Koniusz (ANU College of Engineering and Computer Science), and Mehrtash Harandi (Monash University)	346
Cleaning Noisy Labels by Negative Ensemble Learning for Source-Free Unsupervised Domain Adaptation	356

Learning Foreground-Background Segmentation From Improved Layered GANs Yu Yang (Tsinghua University), Hakan Bilen (University of Edinburgh), Qiran Zou (Tsinghua University), Wing Yin Cheung (Tsinghua University), and Xiangyang Ji (Tsinghua University)	366
To Miss-Attend Is to Misalign! Residual Self-Attentive Feature Alignment for Adapting Object Detectors	376
Vaishnavi Khindkar (IIITH), Chetan Arora (Indian Institute of Technology Delhi), Vineeth N Balasubramanian (Indian Institute of Technology, Hyderabad), Anbumani Subramanian (IIIT-Hyderabad), Rohit Saluja (IIIT-Hyderabad), and C.V. Jawahar (IIIT-Hyderabad)	
Contrast To Divide: Self-Supervised Pre-Training for Learning With Noisy Labels Evgenii Zheltonozhskii (Technion), Chaim Baskin (Technion), Avi Mendelson (Technion), Alex M. Bronstein (Technion), and Or Litany (NVIDIA)	387
PICA: Point-Wise Instance and Centroid Alignment Based Few-Shot Domain Adaptive Object Detection With Loose Annotations <i>Chaoliang Zhong (Fujitsu R&D Center, Co., LTD, Beijing, China), Jie</i> <i>Wang (Fujitsu R&D Center, Co., LTD, Beijing, China), Cheng Feng</i> <i>(Fujitsu R&D Center, Co., LTD, Beijing, China), Ying Zhang (Fujitsu</i> <i>R&D Center, Co., LTD), Beijing, China), Ying Zhang (Fujitsu</i> <i>R&D Center, Co., LTD), Jun Sun (Fujitsu R&D Center Co., Ltd.), and</i> <i>Yasuto Yokota (Fujitsu LTD.)</i>	398
Calibrating CNNs for Few-Shot Meta Learning Peng Yang (Baidu), Shaogang Ren (Baidu Research, USA), Yang Zhao (University at Buffalo), and Ping Li (Baidu Research)	408
FLUID: Few-Shot Self-Supervised Image Deraining Shyam Nandan Rai (IIIT-Hyderabad), Rohit Saluja (IIIT-Hyderabad), Chetan Arora (Indian Institute of Technology Delhi), Vineeth N Balasubramanian (Indian Institute of Technology, Hyderabad), Anbumani Subramanian (IIIT-Hyderabad), and C.V. Jawahar (IIIT-Hyderabad)	418
MaskSplit: Self-Supervised Meta-Learning for Few-Shot Semantic Segmentation Mustafa Sercan Amac (Hacettepe University), Ahmet Sencan (Middle East Technical University), Bugra Baran (METU), Nazli Ikizler-Cinbis (Hacettepe University), and Ramazan Gokberk Cinbis (METU)	428

Image/Video/Multimedia

All the Attention You Need: Global-Local, Spatial-Channel Attention for Image Retrieval Chull Hwan Song (Oddconcepts), Hye Joo Han (Oddconcepts), and Yannis Avrithis (Athena RC)	439
Hierarchical Proxy-Based Loss for Deep Metric Learning Zhibo Yang (Stony Brook University), Muhammet Bastan (Amazon), Xinliang Zhu (Amazon), Douglas Gray (Amazon), and Dimitris Samaras (Stony Brook University)	449
A Fast Partial Video Copy Detection Using KNN and Global Feature Database Weijun Tan (Linksprite Technologies), Hongwei Guo (Deepcam), and Rushuai Liu (Shenzhen Deepcam)	459

Learning With Label Noise for Image Retrieval by Selecting Interactions
Video and Text Matching With Conditioned Embeddings
Re-Compose the Image by Evaluating the Crop on More Than Just a Score
Discovering Underground Maps From Fashion
Strumming to the Beat: Audio-Conditioned Contrastive Video Textures
MovingFashion: A Benchmark for the Video-To-Shop Challenge
Challenges in Procedural Multimodal Machine Comprehension: A Novel Way To Benchmark 526 Pritish Sahu (Rutgers University), Karan Sikka (SRI International), and Ajay Divakaran (SRI, USA)
Video Salient Object Detection via Contrastive Features and Attention Modules

Language, Text and Documents

Multimodal Learning Using Optimal Transport for Sarcasm and Humor Detection
DeepPatent: Large Scale Patent Drawing Recognition and Retrieval
Typenet: Towards Camera Enabled Touch Typing on Flat Surfaces Through Self-Refinement 567 Ben Maman (Tel Aviv University) and Amit Bermano (Tel-Aviv University)
Less Can Be More: Sound Source Localization With a Classification Model

SeeTek: Very Large-Scale Open-Set Logo Recognition With Text-Aware Metric Learning Chenge Li (Amazon.com Inc), István Fehérvári (Amazon), Xiaonan Zhao (Amazon), Ives Macedo (Amazon), and Srikar Appalaraju (Amazon)	587
SAC: Semantic Attention Composition for Text-Conditioned Image Retrieval Surgan Jandial (Media and Data Science Research Lab, Adobe), Pinkesh Badjatiya (Adobe Systems), Pranit Chawla (IIT Kharagpur), Ayush Chopra (MIT), Mausoom Sarkar (Adobe), and Balaji Krishnamurthy (Media and Data Science Research Lab, Adobe)	597
3DRefTransformer: Fine-Grained Object Identification in Real-World Scenes Using Natural Language	607

3D Computer Vision II

Monocular Depth Estimation With Adaptive Geometric Attention
Shadow Art Revisited: A Differentiable Rendering Based Approach
Deep Two-Stream Video Inference for Human Body Pose and Shape Estimation
RGL-NET: A Recurrent Graph Learning Framework for Progressive Part Assembly
Spatial-Temporal Transformer for 3D Point Cloud Sequences
SBEVNet: End-to-End Deep Stereo Layout Estimation
MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Data Augmented 3D Semantic Scene Completion With 2D Segmentation Priors
3D Modeling Beneath Ground: Plant Root Detection and Reconstruction Based on Ground-Penetrating Radar
An Experimental Comparison of Multi-View Stereo Approaches on Satellite Images
Creating and Reenacting Controllable 3D Humans With Differentiable Rendering
Transferable 3D Adversarial Textures Using End-to-End Optimization

Action and Behavior Recognition

Spatiotemporal Initialization for 3D CNNs With Generated Motion Patterns Hirokatsu Kataoka (National Institute of Advanced Industrial Science and Technology (AIST)), Kensho Hara (Tokyo Institute of Technology), Ryusuke Hayashi (National Institute of Advanced Industrial Science and Technology (AIST)), Eisuke Yamagata (National Institute of Advanced Industrial Science and Technology (AIST)), and Nakamasa Inoue (Tokyo Institute of Technology)	737
MUGL: Large Scale Multi Person Conditional Action Generation With Locomotion Shubh Maheshwari (IIIT Hyderabad), Debtanu Gupta (IIIT Hyderabad), and Ravi Kiran Sarvadevabhatla (IIIT Hyderabad)	747
Busy-Quiet Video Disentangling for Video Classification Guoxi Huang (The University of York) and Adrian G. Bors (University of York)	756
Contextual Proposal Network for Action Localization He-Yen Hsieh (Academia Sinica), Ding-Jie Chen (Academia Sinica), and Tyng-Luh Liu (Academia Sinica)	766
Multi-Level Attentive Adversarial Learning With Temporal Dilation for Unsupervised Video Domain Adaptation	776
Peipeng Chen (Sun Yat-sen University), Yuan Gao (School of Data and Computer Science, Sun Yat-sen University), and Andy J. Ma (Sun Yat-sen University)	
MM-ViT: Multi-Modal Video Transformer for Compressed Video Action Recognition Jiawei Chen (InnoPeak Technology) and Chiu Man Ho (OPPO US R&D)	786

PERF-Net: Pose Empowered RGB-Flow Net
Action Anticipation Using Latent Goal Learning
Leaky Gated Cross-Attention for Weakly Supervised Multi-Modal Temporal Action Localization 817
Jun-Tae Lee (Qualcomm AI Research), Sungrack Yun (Qualcomm AI Research), and Mihir Jain (Qualcomm AI Research)
NUTA: Non-Uniform Temporal Aggregation for Action Recognition
Skeleton-DML: Deep Metric Learning for Skeleton-Based One-Shot Action Recognition
Self-Supervised Video Representation Learning With Cross-Stream Prototypical Contrasting 846 Martine Toering (University of Amsterdam), Ioannis Gatopoulos (University of Amsterdam), Maarten Stol (BrainCreators), and Vincent Tao Hu (University of Amsterdam)

Computational Photography and Image Processing II

;57
65
74
84
394
04

DAQ: Channel-Wise Distribution-Aware Quantization for Deep Image Super-Resolution Networks. 913

Cheeun Hong (Seoul National University), Heewon Kim (Seoul National University), Sungyong Baik (Seoul National University), Junghun Oh (Seoul National University), and Kyoung Mu Lee (Seoul National University)	
Supervised Compression for Resource-Constrained Edge Computing Systems	923
Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi (Apple), Marcus A. Brubaker (York University), and Michael S. Brown (York University)	934
Adversarial Open Domain Adaptation for Sketch-to-Photo Synthesis Xiaoyu Xiang (Purdue University), Ding Liu (Bytedance), Xiao Yang (Bytedance AI Lab), Yiheng Zhu (ByteDance AI Lab), Xiaohui Shen (ByteDance AI Lab), and Jan P. Allebach (Purdue University)	944
AE-StyleGAN: Improved Training of Style-Based Auto-Encoders	955
Late-Resizing: A Simple but Effective Sketch Extraction Strategy for Improving Generalization of Line-Art Colorization	965

Transfer Learning

Hierarchically Decoupled Spatial-Temporal Contrast for Self-Supervised Video Representation Learning Zehua Zhang (Indiana University) and David Crandall (Indiana University)	975
Boosting Contrastive Self-Supervised Learning With False Negative Cancellation Tri Huynh (Google), Simon Kornblith (Google Brain), Matthew R. Walter (Toyota Technological Institute at Chicago), Michael Maire (University of Chicago), and Maryam Khademi (Google)	986
Self-Supervised Learning of Domain Invariant Features for Depth Estimation Hiroyasu Akada (KAUST, Keio University), Shariq Farooq Bhat (KAUST), Ibraheem Alhashim (National Center for Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh, Kingdom of Saudi Arabia), and Peter Wonka (KAUST)	997

Adversarial Branch Architecture Search for Unsupervised Domain Adaptation
Forgery Detection by Internal Positional Learning of Demosaicing Traces
Distance-Based Hyperspherical Classification for Multi-Source Open-Set Domain Adaptation 1030
Silvia Bucci (Italian Institute of Technology), Francesco Cappio Borlino (Politecnico di Torino), Barbara Caputo (Politecnico di Torino), and Tatiana Tommasi (Politecnico di Torino)
 Few-Shot Weakly-Supervised Object Detection via Directional Statistics
 Self-Supervised Pretraining Improves Self-Supervised Pretraining
 SC-UDA: Style and Content Gaps Aware Unsupervised Domain Adaptation for Object Detection 1061 Fuxun Yu (George Mason University), Di Wang (Microsoft), Yinpeng Chen (Microsoft), Nikolaos Karianakis (Microsoft), Tong Shen (Microsoft), Pei Yu (Microsoft), Dimitrios Lymberopoulos (Microsoft), Sidi Lu (Wayne State University), Weisong Shi (Wayne State University), and Xiang Chen (George Mason University)
Coupled Training for Multi-Source Domain Adaptation
Federated Multi-Target Domain Adaptation
Unsupervised Learning for Human Sensing Using Radio Signals
Few-Shot Object Detection by Attending to Per-Sample-Prototype

Estimating Image Depth in the Comics Domain	1111
Deblina Bhattacharjee (EPFL), Martin Everaert (EPFL), Mathieu Salzmann	
(EPFL), and Sabine Süsstrunk (EPFL)	

Biometrics

A Deep Insight Into Measuring Face Image Utility With General and Face-Specific Image Quality Metrics
Learnable Multi-Level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection
Attribute-Based Deep Periocular Recognition: Leveraging Soft Biometrics to Improve Periocular Recognition
Face Verification With Challenging Imposters and Diversified Demographics
MTGLS: Multi-Task Gaze Estimation With Limited Supervision
Complete Face Recovery GAN: Unsupervised Joint Face Rotation and De-Occlusion From a Single-View Image
Matching and Recovering 3D People From Multiple Views
On Black-Box Explanation for Face Verification
LwPosr: Lightweight Efficient Fine Grained Head Pose Estimation

Mobile Based Human Identification Using Forehead Creases: Application and Assessment Und COVID-19 Masked Face Scenarios	ler 215
3DFaceFill: An Analysis-by-Synthesis Approach To Face Completion	224
Disentangled Representation With Dual-Stage Feature Learning for Face Anti-Spoofing 12 Yu-Chun Wang (National Tsing Hua University), Chien-Yi Wang (Microsoft), and Shang-Hong Lai (Microsoft)	234
Joint Classification and Trajectory Regression of Online Handwriting Using a Multi-Task Learning Approach	244
Human-Aided Saliency Maps Improve Generalization of Deep Learning	255

Object Detection and Recognition

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection	1265
Fusion Point Pruning for Optimized 2D Object Detection With Radar-Camera Fusion	1275
Detecting Tear Gas Canisters With Limited Training Data	1283
Online Continual Learning via Candidates Voting	1292
A Semi-Supervised Generalized VAE Framework for Abnormality Detection Using One-Class Classification	1302
YOLO-ReT: Towards High Accuracy Real-Time Object Detection on Edge GPUs	311

Improving Object Detection by Label Assignment Distillation
Robustly Recognizing Irregular Scene Text by Rectifying Principle Irregularities
Multi-Head Deep Metric Learning Using Global and Local Representations
Extractive Knowledge Distillation
Recursive Contour-Saliency Blending Network for Accurate Salient Object Detection
Adversarial Robustness of Deep Sensor Fusion Models
 WEPDTOF: A Dataset and Benchmark Algorithms for In-the-Wild People Detection and Tracking From Overhead Fisheye Cameras
A Context-Enriched Satellite Imagery Dataset and an Approach for Parking Lot Detection 1391 Yifang Yin (A*STAR), Wenmiao Hu (National University of Singapore), An Tran (Grabtaxi Holdings), Hannes Kruppa (Grab Holdings Inc.), Roger Zimmermann (NUS), and See-Kiong Ng (National University of Singapore)
Densely-Packed Object Detection via Hard Negative-Aware Anchor Attention

Remote Sensing and Vision Systems

 Robust 3D Garment Digitization From Monocular 2D Images for 3D Virtual Try-On Systems .. 1411 Sahib Majithia (Myntra Design pvt. Itd.), Sandeep N. Parameswaran (Myntra Designs Pvt. Ltd.), Sadbhavana Babar (Myntra Designs Pvt. Ltd.), Vikram Garg (Myntra Designs Pvt. Ltd.), Astitva Srivastava (IIITH), and Avinash Sharma (CVIT, IIIT-Hyderabad)
 PPCD-GAN: Progressive Pruning and Class-Aware Distillation for Large-Scale Conditional

Billion-Scale Pretraining With Vision Transformers for Multi-Task Visual Representations 1 Josh Beal (Pinterest), Hao-Yu Wu (Pinterest.com), Dong Huk Park (UC Berkeley), Andrew Zhai (Pinterest, Inc.), and Dmitry Kislyuk (Pinterest)	431
 Multi-Task Classification of Sewer Pipe Defects and Properties Using a Cross-Task Graph Neural Network Decoder	441
Pixel-Level Bijective Matching for Video Object Segmentation	453
 Extraction of Positional Player Data From Broadcast Soccer Videos	463
Interpretable Semantic Photo Geolocation	474
Active Learning for Improved Semi-Supervised Semantic Segmentation in Satellite Images 1 Shasvat Desai (Orbital Insight) and Debasmita Ghose (Yale University)	485
Lane-Level Street Map Extraction From Aerial Imagery	496
Explainable Al	
Discrete Neural Representations for Explainable Anomaly Detection	506

Discrete Neural Representations for Explainable Anomaly Detection	506
Auditing Saliency Cropping Algorithms	515
Agree To Disagree: When Deep Learning Models With Identical Architectures Produce Distinct Explanations	524
Visualizing Paired Image Similarity in Transformer Networks	534

X-MIR: EXplainable Medical Image Retrieval Brian Hu (Kitware Inc.), Bhavan Vasu (Kitware), and Anthony Hoogs (Kitware)	1544
Uncertainty Learning Towards Unsupervised Deformable Medical Image Registration Xuan Gong (University at Buffalo), Luckyson Khaidem (University at Buffalo), Wentao Zhu (Kuaishou), Baochang Zhang (Beihang University), and David Doermann (University at Buffalo)	1555
How Good Is Your Explanation? Algorithmic Stability Measures To Assess the Quality of Explanations for Deep Neural Networks <i>Thomas Fel (IRT Saint Exupery), David Vigouroux (IRT Saint Exupery),</i> <i>Rémi Cadène (LIP6), and Thomas Serre (Brown University)</i>	1565
SWAG-V: Explanations for Video Using Superpixels Weighted by Average Gradients Thomas Hartley (Cardiff University), Kirill Sidorov (Cardiff University), Christopher Willis (BAE Systems Al Labs), and David Marshall (Cardiff University)	1576

Transfer, Few-shot, Semi-, and Un- Supervised Learning II

SEGA: Semantic Guided Attention on Visual Prototype for Few-Shot Learning
Enhancing Few-Shot Image Classification With Unlabelled Examples
A Pixel-Level Meta-Learner for Weakly Supervised Few-Shot Semantic Segmentation
COCOA: Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen Domains 1618 Puneet Mangla (IIT Hyderabad), Shivam Chandhok (Indian Institute of Technology, Hyderabad), Vineeth N Balasubramanian (Indian Institute of Technology, Hyderabad), and Fahad Shahbaz Khan (MBZUAI)
Meta-Meta Classification for One-Shot Learning
Transfer Learning for Pose Estimation of Illustrated Characters
From Node To Graph: Joint Reasoning on Visual-Semantic Relational Graph for Zero-ShotDetection1648Hui Nie (Institute of Computing Technology, Chinese Academy of Sciences), Ruiping Wang (Institute of Computing Technology, Chinese Academy of Sciences), and Xilin Chen (Institute of Computing Technology, Chinese Academy of Sciences)

Mutual Learning of Joint and Separate Domain Alignments for Multi-Source Domain Adaptation... 1658

Yuanyuan Xu (Institute of Computing Technology, Chinese Academy of Sciences), Meina Kan (Institute of Computing Technology, Chinese Academy of Sciences), Shiguang Shan (Institute of Computing Technology, Chinese Academy of Sciences), and Xilin Chen (Institute of Computing Technology, Chinese Academy of Sciences)

Generalized Clustering and Multi-Manifold Learning With Geometric Structure Preservation 1668 Lirong Wu (Westlake University), Zicheng Liu (Westlake University), Jun Xia (Westlake University and Zhejiang University), Zelin Zang (Westlake University), Siyuan Li (Westlake University), and Stan Z. Li (Westlake University)

Medical Imaging / Imaging for Bioinformatics / Biological and Cell Microscopy

Towards Durability Estimation of Bioprosthetic Heart Valves via Motion Symmetry Analysis .. 1696 Maryam Alizadeh (University of Victoria), Melissa Cote (University of Victoria), and Alexandra Branzan Albu (University of Victoria) Co-Net: A Collaborative Region-Contour-Driven Network for Fine-to-Finer Medical Image Anran Liu (Xi'an Jiaotong University), Xiangsheng Huang (Institute of AutomationChinese Academy of Sciences), Tong Li (Xi'an Jiaotong University), and Pengcheng Ma (Institute of AutomationChinese Academy of Sciences) Liyuan Pan (The Australian National University), Liu Liu (ANU), Anthony G. Condon (CSIRO), Gonzalo M. Estavillo (CSIRO), Robert A. Coe (The Commonwealth Scientific and Industrial Research Organisation (CSIRO)), Geoff Bull (High Resolution Plant Phenomics Centre - CSIRO Agriculture and Food), Eric A. Stone (The Australian National University), Lars Petersson (Data61/CSIRO), and Vivien Rolland (CSIRO) Dynamic CNNs Using Uncertainty To Overcome Domain Generalization for Surgical Instrument Markus Philipp (Karlsruhe Institute of Technology / Carl Zeiss Meditec AG), Anna Alperovich (Carl Zeiss AG), Marielena Gutt-Will (University Hospital of Bern), Andrea Mathis (University Hospital of Bern), Stefan Saur (Carl Zeiss Meditec AG), Andreas Raabe (University Hospital of Bern), and Franziska Mathis-Ullrich (Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology)

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation
UNETR: Transformers for 3D Medical Image Segmentation
Consistent Cell Tracking in Multi-Frames With Spatio-Temporal Context by Object-Level Warping Loss
Semi-Supervised Semantic Segmentation of Vessel Images Using Leaking Perturbations 1769 Jinyong Hou (University of Otago), Xuejie Ding (University of Otago), and Jeremiah D. Deng (University of Otago, New Zealand)
Compressed Sensing MRI Reconstruction With Co-VeGAN: Complex-Valued Generative Adversarial Network
Knowledge-Augmented Contrastive Learning for Abnormality Classification and Localization in Chest X-Rays With Radiomics Using a Feedback Loop
T-Net: A Resource-Constrained Tiny Convolutional Neural Network for Medical Image Segmentation

Vision for Robotics and Other Applictions

Automated Defect Inspection in Reverse Engineering of Integrated Circuits Ann-Christin Bette (TU Munich), Patrick Brus (Infineon), Gabor Balazs (Technical University of Munich), Matthias Ludwig (TU Munich), and Alois Knoll (Robotics and Embedded Systems)	1809
CFLOW-AD: Real-Time Unsupervised Anomaly Detection With Localization via Conditional Normalizing Flows Denis Gudovskiy (Panasonic), Shun Ishizaka (Panasonic Corporation), and Kazuki Kozuka (Panasonic Corporation)	1819
Fully Convolutional Cross-Scale-Flows for Image-Based Defect Detection Marco Rudolph (Leibniz University Hannover), Tom Wehrbein (Leibniz University Hannover), Bodo Rosenhahn (Leibniz University Hannover), and Bastian Wandt (University of British Columbia)	1829

Network Generalization Prediction for Safety Critical Tasks in Novel Operating Domains 183 Molly O'Brien (Johns Hopkins University), Mike Medoff (exida), Julia Bukowski (Villanova University), and Gregory D. Hager (The Johns Hopkins University)	}9
CoordiNet: Uncertainty-Aware Pose Regressor for Reliable Vehicle Localization	18
 SIGNAV: Semantically-Informed GPS-Denied Navigation and Mapping in Visually-Degraded Environments	58
Self-Supervised Domain Adaptation for Visual Navigation With Global Map Consistency 186 Eun Sun Lee (Seoul National University), Junho Kim (Seoul National University), and Young Min Kim (Seoul National University)	58
FT-DeepNets: Fault-Tolerant Convolutional Neural Networks With Kernel-Based Duplication 187 Iljoo Baek (Carnegie Mellon University), Wei Chen (Carnegie Mellon University), Zhihao Zhu (Carnegie Mellon University), Soheil Samii (GM Motors R&D), and Raj Rajkumar (Carnegie Mellon University)	'8
Learning Maritime Obstacle Detection From Weak Annotations by Scaffolding	38
Siamese Transformer Pyramid Networks for Real-Time UAV Tracking	98
FastAno: Fast Anomaly Detection via Spatio-Temporal Patch Transformation)8

Segmentation

Temporally Stable Video Segmentation Without Video Annotations Aharon Azulay (Lightricks, HUJI), Tavi Halperin (Lightricks), Orestis Vantzos (Lightricks), Nadav Bornstein (Lightricks), and Ofir Bibi (Lightricks)	1919
D2Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos Christian Schmidt (RWTH Aachen), Ali Athar (RWTH Aachen), Sabarinath Mahadevan (RWTH Aachen University), and Bastian Leibe (RWTH Aachen University)	1929
Single-Shot Path Integrated Panoptic Segmentation Sukjun Hwang (Yonsei University), Seoung Wug Oh (Adobe Research), and Seon Joo Kim (Yonsei University)	1939

Robust Lane Detection via Expanded Self Attention
Pixel-by-Pixel Cross-Domain Alignment for Few-Shot Semantic Segmentation
VCSeg: Virtual Camera Adaptation for Road Segmentation
Maximizing Cosine Similarity Between Spatial Features for Unsupervised Domain Adaptation in Semantic Segmentation
Hyper-Convolution Networks for Biomedical Image Segmentation
Plugging Self-Supervised Monocular Depth Into Unsupervised Domain Adaptation for Semantic Segmentation
Shallow Features Guide Unsupervised Domain Adaptation for Semantic Segmentation at Class Boundaries

Transfer, Few-shot, Semi-, and Un- Supervised Learning III

Bayesian Uncertainty and Expected Gradient Length – Regression: Two Sides of the Same Coin?	. 2021
The Hitchhiker's Guide to Prior-Shift Adaptation Tomáš Šipka (CTU FEE), Milan Šulc (Czech Technical University in Prague), and Jiří Matas (CMP CTU FEE)	. 2031
Ortho-Shot: Low Displacement Rank Regularization With Data Augmentation for Few-Shot Learning Uche Osahor (West Virginia University) and Nasser M. Nasrabadi (West Virginia University)	. 2040
Tensor Feature Hallucination for Few-Shot Learning Michalis Lazarou (Imperial College London), Tania Stathaki (Imperial College London), and Yannis Avrithis (Athena RC)	. 2050

HierMatch: Leveraging Label Hierarchies for Improving Semi-Supervised Learning
Identifying Wrongly Predicted Samples: A Method for Active Learning
Multi-Domain Incremental Learning for Semantic Segmentation
Few-Shot Open-Set Recognition of Hyperspectral Images With Outlier Calibration Network 2091 Debabrata Pal (Honeywell), Valay Bundele (IIT Bombay), Renuka Sharma (IIT Bombay), Biplab Banerjee (Indian Institute of Technology, Bombay), and Yogananda Jeppu (Honeywell)
Multi-Motion and Appearance Self-Supervised Moving Object Detection
Masking Modalities for Cross-Modal Video Retrieval
Single Source One Shot Reenactment Using Weighted Motion From Paired Feature Points 2121 Soumya Tripathy (Tampere University of Technology), Juho Kannala (Aalto University, Finland), and Esa Rahtu (Tampere University)

Multimedia and Other Applications

Sign Language Translation With Hierarchical Spatio-Temporal Graph Neural Network
Transductive Weakly-Supervised Player Detection Using Soccer Broadcast Videos
Beyond Mono to Binaural: Generating Binaural Audio From Mono Audio With Depth and Cross Modal Attention
Unsupervised Sounding Object Localization With Bottom-Up and Top-Down Attention 2161 Jiayin Shi (Shanghai Jiao Tong University) and Chao Ma (Shanghai Jiao Tong University)

Visually Guided Sound Source Separation and Localization Using Self-Supervised Motion Representations	1
V-SlowFast Network for Efficient Visual Sound Separation	2
CrossLocate: Cross-Modal Large-Scale Visual Geo-Localization in Natural Environments Using Rendered Modalities	3
C-VTON: Context-Driven Image-Based Virtual Try-On Network	3
Predicting Levels of Household Electricity Consumption in Low-Access Settings	3
Occlusion-Robust Object Pose Estimation With Holistic Representation	3
Dual-Head Contrastive Domain Adaptation for Video Action Recognition	4
Towards Class-Oriented Poisoning Attacks Against Neural Networks	4

3D Computer Vision III

Tensor-Based Non-Rigid Structure From Motion Stella Graßhof (IT University of Copenhagen) and Sami Sebastian Brandt (IT University of Copenhagen)	2254
Registration of Human Point Set Using Automatic Key Point Detection and Region-Aware Features Amar Maharjan (University of North Texas) and Xiaohui Yuan (University of North Texas)	2264
Style Agnostic 3D Reconstruction via Adversarial Style Transfer Felix Petersen (University of Konstanz), Bastian Goldluecke (University of Konstanz), Oliver Deussen (University of Konstanz), and Hilde Kuehne (University of Frankfurt)	2273

Seeing Implicit Neural Representations As Fourier Series	283
M3DETR: Multi-Representation, Multi-Scale, Mutual-Relation 3D Object Detection With Transformers	293
Tianrui Guan (University of Maryland, College Park), Jun Wang (The University of Maryland, College Park), Shiyi Lan (University of Maryland), Rohan Chandra (University of Maryland), Zuxuan Wu (UMD), Larry Davis (University of Maryland), and Dinesh Manocha (University of Maryland at College Park)	
Neural Architecture Search for Efficient Uncalibrated Deep Photometric Stereo	:304
 Shape-Coded ArUco: Fiducial Marker for Bridging 2D and 3D Modalities	:315
Modeling Dynamic Target Deformation in Camera Calibration	:325
Information Bottlenecked Variational Autoencoder for Disentangled 3D Facial Expression Modelling	:334
Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes	:344

Deep Learning I

Auto-X3D: Ultra-Efficient Video Understanding via Finer-Grained Neural Architecture Search. 2 Yifan Jiang (University of Texas at Austin), Xinyu Gong (University of Texas at Austin), Junru Wu (Texas A&M University), Humphrey Shi (U of Oregon; UIUC), Zhicheng Yan (Facebook AI), and Zhangyang Wang (University of Texas at Austin)	2354
EdgeConv With Attention Module for Monocular Depth Estimation	2364
On the Maximum Radius of Polynomial Lens Distortion	2374

Non-Semantic Evaluation of Image Forensics Tools: Methodology and Database	2383
Addressing Out-of-Distribution Label Noise in Webly-Labelled Data	2393
SpectraNet: Learned Recognition of Artificial Satellites From High Contrast Spectroscopic Imagery	2403
Swindle (United States Space Force), Matthew Phelps (United States Space Force), and Justin Fletcher (United States Space Force)	
Improving Fractal Pre-Training	2412
Multi-Domain Semantic Segmentation With Overlapping Labels	2422
GraN-GAN: Piecewise Gradient Normalization for Generative Adversarial Networks	2432

Vision and Language / Document Analysis

Co-Segmentation Aided Two-Stream Architecture for Video Captioning
Improve Image Captioning by Estimating the Gazing Patterns From the Caption
GraDual: Graph-Based Dual-Modal Representation for Image-Text Matching
Let There Be a Clock on the Beach: Reducing Object Hallucination in Image Captioning 2473 Ali Furkan Biten (Computer Vision Center), Lluís Gómez (Universitat Autónoma de Barcelona), and Dimosthenis Karatzas (Computer Vision Centre)

Is an Image Worth Five Sentences? A New Look Into Semantics for Image-Text Matching 2483 Ali Furkan Biten (Computer Vision Center), Andrés Mafla (Computer Vision Centre), Lluís Gómez (Universitat Autónoma de Barcelona), and Dimosthenis Karatzas (Computer Vision Centre)
Variational Stacked Local Attention Networks for Diverse Video Captioning
QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual
Muchao Ye (The Pennsylvania State University), Quanzeng You (Microsoft Azure Computer Vision), and Fenglong Ma (Pennsylvania State University)
An Investigation of Critical Issues in Bias Mitigation Techniques
Robik Shrestha (Rochester Institute of Technology), Kushal Kafle (Adobe Research), and Christopher Kanan (Rochester Institute of
Technology)
Natural Language Video Moment Localization Through Query-Controlled Temporal Convolution 2524
Lingyu Zhang (Rensselaer Polytechnic Institute) and Richard J. Radke (Rensselaer Polytechnic Institute)
Post-OCR Paragraph Recognition by Graph Convolutional Networks
Visual Understanding of Complex Table Structures From Document Images
Parsing Line Chart Images Using Linear Programming
One-Shot Compositional Data Generation for Low Resource Handwritten Text Recognition 2563 Mohamed Ali Souibgui (Computer Vision Center, Barcelona, Spain), Ali Furkan Biten (Computer Vision Center), Sounak Dey (Computer Vision Center), Alicia Fornés (CVC), Yousri Kessentini (MIRACL Laboratory), Lluís Gómez (Universitat Autónoma de Barcelona), Dimosthenis Karatzas (Computer Vision Centre), and Josep Lladós (Computer Vision Center, Barcelona)
Efficient Counterfactual Debiasing for Visual Question Answering

InfographicVQA
Science Education and Research, Pune), Rubèn Tito (Computer Vision Center), Dimosthenis Karatzas (Computer Vision Centre), Ernest Valveny (Universitat Autónoma de Barcelona), and C.V. Jawahar (IIIT-Hyderabad)
Segmentation, Tracking, and Scene Understanding
Mixed-Dual-Head Meets Box Priors: A Robust Framework for Semi-Supervised Segmentation
Chenshu Chen (Hikvision Research Institute), Tao Liu (Hikvision Research Institute), Wenming Tan (Hikvision Research Institute), and Shiliang Pu (Hikvision Research Institute)
Self-Supervised Test-Time Adaptation on Video Data
Modeling Aleatoric Uncertainty for Camouflaged Object Detection
Perceptual Consistency in Video Segmentation
AuxAdapt: Stable and Efficient Test-Time Adaptation for Temporally Consistent Video Semantic Segmentation
Time-Space Transformers for Video Panoptic Segmentation
Inferring the Class Conditional Response Map for Weakly Supervised Semantic Segmentation 2653 <i>Weixuan Sun (Australian National University), Jing Zhang (Australian National University), and Nick Barnes (ANU)</i>
Semi-Supervised Multi-Task Learning for Semantics and Depth
Compensation Tracker: Reprocessing Lost Object for Multi-Object Tracking

Hole-Robust Wireframe Detection Naejin Kong (Samsung), Kiwoong Park (Samsung Electronics), and Harshith Goka (Samsung Research)	2684
Global Assists Local: Effective Aerial Representations for Field of View Constrained Image Geo-Localization	2694
Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation John Yang (Seoul National University), Yash Bhalgat (Qualcomm Al Research), Simyung Chang (Qualcomm Korea YH), Fatih Porikli (Qualcomm Al Research), and Nojun Kwak (Seoul National University)	2703
 FASSST: Fast Attention Based Single-Stage Segmentation Net for Real-Time Instance Segmentation	2714
RLSS: A Deep Reinforcement Learning Algorithm for Sequential Scene Generation Azimkhon Ostonov (KAUST), Peter Wonka (KAUST), and Dominik L. Michels (KAUST)	2723
Learning Temporal Video Procedure Segmentation From an Automatically Collected Large Dataset Lei Ji (Microsoft), Chenfei Wu (Microsoft), Daisy Zhou (Microsoft), Kun Yan (Beihang University), Edward Cui (Microsoft), Xilin Chen (Institute of Computing Technology, Chinese Academy of Sciences), and Nan Duan (Microsoft Research)	2733

Adversarial Methods, Biometrics and Face Processing

Geometry-Aware Hierarchical Bayesian Learning on Manifolds	743
Generative Adversarial Graph Convolutional Networks for Human Action Synthesis	753
A Riemannian Framework for Analysis of Human Body Surface	763
Detection and Localization of Facial Expression Manipulations	773
Generalized Facial Manipulation Detection With Edge Region Feature Extraction	784

Digital and Physical-World Attacks on Remote Pulse Detection
Unsupervised Robust Domain Adaptation Without Source Data
Attack Agnostic Detection of Adversarial Examples via Random Subspace Analysis
Evaluating the Robustness of Semantic Segmentation for Autonomous Driving Against Real-World Adversarial Patch Attacks
ADC: Adversarial Attacks Against Object Detection That Evade Context Consistency Checks 2836 Mingjun Yin (University of California, Riverside), Shasha Li (University of California, Riverside), Chengyu Song (University of California, Riverside), M. Salman Asif (University of California, Riverside), Amit K. Roy-Chowdhury (University of California, Riverside), and Srikanth V. Krishnamurthy (University of California, Riverside)
Semantically Stealthy Adversarial Attacks Against Segmentation Models
One-Class Learned Encoder-Decoder Network With Adversarial Context Masking for Novelty Detection

Deep Learning, Diverse Applications in Computer Vision

Fair and Accurate Age Prediction Using Distribution Aware Data Curation and Augmentation 2867

Yushi Cao (Nanyang Technological University), David Berend (Nanyang Technological University), Palina Tolmach (Nanyang Technological University), Guy Amit (Ben-Gurion University of the Negev), Moshe Levy (Ben-Gurion University of the Negev), Yang Liu (Nanyang Technology University, Singapore), Asaf Shabtai (Ben-Gurion University of the Negev), and Yuval Elovici (Ben-Gurion University of the Negev)

How and What To Learn: Taxonomizing Self-Supervised Learning for 3D Action Recognition . 2888 Amor Ben Tanfous (ANITI), Aimen Zerroug (ANITI), Drew Linsley (Brown University), and Thomas Serre (Brown University)

Cross-Modal Adversarial Reprogramming
The Untapped Potential of Off-the-Shelf Convolutional Neural Networks
MisConv: Convolutional Neural Networks for Missing Data
Surrogate Model-Based Explainability Methods for Point Cloud NNs
AttWalk: Attentive Cross-Walks for Deep Mesh Analysis
Self-Supervised Knowledge Transfer via Loosely Supervised Auxiliary Tasks
Sandwich Batch Normalization: A Drop-In Replacement for Feature Distribution Heterogeneity 2957
Xinyu Gong (University of Texas at Austin), Wuyang Chen (University of Texas at Austin), Tianlong Chen (Unversity of Texas at Austin), and Zhangyang Wang (University of Texas at Austin)
In-Field Phenotyping Based on Crop Leaf and Plant Instance Segmentation

Applications and Systems

PhotoWCT2: Compact Autoencoder for Photorealistic Style Transfer Resulting From Blockwise Training and Skip Connections of High-Frequency Residuals	78
MAPS: Multimodal Attention for Product Similarity	38
mToFNet: Object Anti-Spoofing With Mobile Time-of-Flight Data	€7
A Modular and Unified Framework for Detecting and Localizing Video Anomalies)7

PROVES: Establishing Image Provenance Using Semantic Signatures
Multi-Branch Neural Networks for Video Anomaly Detection in Adverse Lighting and Weather Conditions
Rethinking Video Anomaly Detection – A Continual Learning Approach
LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of Feature Similarity 3046 Tejan Karmali (Indian Institute of Science, Bengaluru), Abhinav Atrishi (Indian Institute of Science, Bengaluru), Sai Sree Harsha (National Institute of Technology, Karnataka, Surathkal), Susmit Agrawal (Indian Institute of Science), Varun Jampani (Google), and R. Venkatesh Babu (Indian Institute of Science)
Pro-CCaps: Progressively Teaching Colourisation to Capsules
Multi-Scale Patch-Based Representation Learning for Image Anomaly Detection and Segmentation
Short-Term Solar Irradiance Prediction From Sky Images With a Clear Sky Model
Intelligent Camera Selection Decisions for Target Tracking in a Camera Network

Computational Photography, Image and Video Synthesis

Revealing Disocclusions in Temporal View Synthesis Through Infilling Vector Prediction3 Vijayalakshmi Kanchana (Indian Institute of Science), Nagabhushan Somraj (Indian Institute of Science), Suraj Yadwad (Indian Institute of Science), and Rajiv Soundararajan (Indian Institute of Science)	:093
Pose-Guided Generative Adversarial Net for Novel View Action Synthesis	103

Facial Attribute Transformers for Precise and Robust Makeup Transfer
Enhanced Correlation Matching Based Video Frame Interpolation
Robust High-Resolution Video Matting With Temporal Guidance
 Tailor Me: An Editing Network for Fashion Attribute Shape Manipulation
Fast and Efficient Restoration of Extremely Dark Light Fields
S2FGAN: Semantically Aware Interactive Sketch-To-Face Translation
Resolution-Robust Large Mask Inpainting With Fourier Convolutions
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing
Fast Nonlinear Image Unblending
Measuring Hidden Bias Within Face Recognition via Racial Phenotypes

Imaging for Medical and Bioinformatics

Weakly Supervised Branch Network With Template Mask for Classifying Masses in 3D Automated Breast Ultrasound
 Weakly-Supervised Convolutional Neural Networks for Vessel Segmentation in Cerebral Angiography
METGAN: Generative Tumour Inpainting and Modality Synthesis in Light Sheet Microscopy 3230 Izabela Horvath (TUM), Johannes Paetzold (TUM), Oliver Schoppe (Technische Universität München), Rami Al-Maskari (TUM), Ivan Ezhov (TUM), Suprosanna Shit (TUM), Hongwei Li (Technical University of Munich), Ali Ertürk (Institute for Stroke and Dementia Research, LMU Munich), and Bjoern Menze (TUM)
TA-Net: Topology-Aware Network for Gland Segmentation
Non-Local Attention Improves Description Generation for Retinal Images
 Weakly Supervised Learning for Joint Image Denoising and Protein Localization in Cryo-Electron Microscopy
AFTer-UNet: Axial Fusion Transformer UNet for Medical Image Segmentation

Recognition I

Danish Fungi 2020 – Not Just Another Image Recognition Dataset Lukáš Picek (University of West Bohemia), Milan Šulc (Czech Technical University in Prague), Jiří Matas (CMP CTU FEE), Thomas S. Jeppesen (University of Copenhagen), Jacob Heilmann-Clausen (GBIF), Thomas Læssøe (Department of Biology/Globe Institute, University of Copenhagen), and Tobias Frøslev (GLOBE Institute)	3281
Multi-View Fusion of Sensor Data for Improved Perception and Prediction in Autonomous Driving Sudeep Fadadu (Aurora), Shreyash Pandey (Aurora), Darshan Hegde (Dexterity Inc), Yi Shi (Aurora), Fang-Chieh Chou (Aurora), Nemanja Djuric (Aurora Innovation), and Carlos Vallespi-Gonzalez (Uber)	3292
Learned Event-Based Visual Perception for Improved Space Object Detection Nikolaus Salvatore (Centauri Corporation) and Justin Fletcher (AFSPC)	3301
Dataset Knowledge Transfer for Class-Incremental Learning Without Memory Habib Slim (CEA-LIST), Eden Belouadah (CEA LIST), Adrian Popescu (CEA LIST), and Darian Onchis (West University of Timisoara)	3311
Learning to Weight Filter Groups for Robust Classification Siyang Yuan (Duke University), Yitong Li (Apple Inc), Dong Wang (Duke University), Ke Bai (Duke University), Lawrence Carin (Duke University; KAUST, Saudi Arabia), and David Carlson (Duke University)	3321
Low-Cost Multispectral Scene Analysis With Modality Distillation Heng Zhang (Univ Rennes 1), Elisa Fromont (Université Rennes 1, IRISA/INRIA rba), Sébastien Lefèvre (Université de Bretagne Sud / IRISA), and Bruno Avignon (Atermes)	3331
HHP-Net: A Light Heteroscedastic Neural Network for Head Pose Estimation With Uncertaint 3341 Giorgio Cantarini (MaLGa-DIBRIS, Università degli Studi di Genova), Federico Figari Tomenotti (MaLGa-DIBRIS, Università degli Studi di Genova), Nicoletta Noceti (MaLGa-DIBRIS, Università degli Studi di Genova), and Francesca Odone (University of Genova, Italy)	y
Batch Normalization Tells You Which Filter Is Important Junghun Oh (Seoul National University), Heewon Kim (Seoul National University), Sungyong Baik (Seoul National University), Cheeun Hong (Seoul National University), and Kyoung Mu Lee (Seoul National University)	3351
Novel Ensemble Diversification Methods for Open-Set Scenarios Miriam Farber (Amazon.com), Roman Goldenberg (Google), George Leifman (Google), and Gal Novich (Amazon)	3361
Measuring Representation of Race, Gender, and Age in Children's Books: Face Detection and Feature Classification in Illustrated Images Teodora Szasz (The University of Chicago), Emileigh Harrison (University of Chicago), Ping-Jung Liu (The University of Chicago), Ping-Chang Lin (University of Chicago), Hakizumwami Birali Runesha (University of Chicago), and Anjali Adukia (The University of Chicago)	3371

Vision for Robotics / Deep Learning

CeyMo: See More on Roads – A Novel Benchmark Dataset for Road Marking Detection 33 Oshada Jayasinghe (University of Moratuwa), Sahan Hemachandra (University of Moratuwa), Damith Anhettigama (University of Moratuwa), Shenali Kariyawasam (University of Moratuwa), Ranga Rodrigo (University of Moratuwa), and Peshala Jayasekara (University of Moratuwa)	381
Towards Active Vision for Action Localization With Reactive Control and Predictive Learning	391
ForeSI: Success-Aware Visual Navigation Agent	401
DG-Labeler and DGL-MOTS Dataset: Boost the Autonomous Driving Perception	111
TricubeNet: 2D Kernel-Based Object Representation for Weakly-Occluded Oriented Object Detection	421
AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-Based Road Traffic Monitoring	431
StyleMC: Multi-Channel Based Fast Text-Guided Image Generation and Manipulation	141
Self-Guidance: Improve Deep Neural Network Generalization via Knowledge Distillation 34 Zhenzhu Zheng (University of Delaware) and Xi Peng (University of Delaware)	451
 REFICS: A Step Towards Linking Vision With Hardware Assurance	461

Data InStance Prior (DISP) in Generative Adversarial Networks	3471
Puneet Mangla (IIT Hyderabad), Nupur Kumari (Carnegie Mellon	
University), Mayank Singh (Adobe Systems), Balaji Krishnamurthy	
(missing), and Vineeth N. Balasubramanian (Indian Institute of	
Technology Hyderabad)	

Deep Learning - Architectures, Training, and Inference

Online Knowledge Distillation by Temporal-Spatial Boosting Chengcheng Li (The University of Tennessee, Knoxville), Zi Wang (UTK), and Hairong Qi (University of Tennessee-Knoxville)	3482
Multi-Dimensional Dynamic Model Compression for Efficient Image Super-Resolution	3492
Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee (Inha University), Seunghyun Lee (Inha University), and Byung Cheol Song (Inha University)	3503
Channel Pruning via Lookahead Search Guided Reinforcement Learning	3513
Progressive Automatic Design of Search Space for One-Shot Neural Architecture Search 3 Xin Xia (Bytedance Inc), Xuefeng Xiao (ByteDance Inc), Xing Wang (Bytedance Al Lab), and Min Zheng (ByteDance)	3525
Meta Approach to Data Augmentation Optimization	3535
Approximate Neural Architecture Search via Operation Distribution Learning	3545
Resource-Efficient Hybrid X-Formers for Vision	3555
Leveraging Test-Time Consensus Prediction for Robustness Against Unseen Noise Anindya Sarkar (IIT Hyderabad), Anirban Sarkar (IIT Hyderabad), and Vineeth N Balasubramanian (Indian Institute of Technology, Hyderabad)	3564
Latent Reweighting, an Almost Free Improvement for GANs	3574
Towards a Robust Differentiable Architecture Search Under Label Noise	3584

EZCrop: Energy-Zoned Channels for Robust Output Pruning	
Rui Lin (The University of Hong Kong), Jie Ran (HKU), Dongpeng Wang	
(umechk), King Hung Chiu (umechk), and Ngai Wong (The University of	
Hong Kong)	

Deep Learning II

PRECODE – A Generic Model Extension To Prevent Deep Gradient Leakage Daniel Scheliga (Technische Universität Ilmenau), Patrick Mäder (Technische Universität Ilmenau), and Marco Seeland (TU Ilmenau)	3605
S2-MLP: Spatial-Shift MLP Architecture for Vision Tan Yu (Baidu Research), Xu Li (Baidu Research), Yunfeng Cai (Baidu Research), Mingming Sun (Baidu Research), and Ping Li (Baidu Research)	3615
Preventing Catastrophic Forgetting and Distribution Mismatch in Knowledge Distillation via Synthetic Data	3625
 FalCon: Fine-Grained Feature Map Sparsity Computing With Decomposed Convolutions for Inference Optimization	3634
Model Compression Using Optimal Transport Suhas Lohit (Mitsubishi Electric Research Laboratories) and Michael Jones (MERL)	3645
Sharing Decoders: Network Fission for Multi-Task Pixel Prediction Steven Hickson (Google), Karthik Raveendran (Google), and Irfan Essa (Google)	3655
Hessian-Aware Pruning and Optimal Neural Implant Shixing Yu (Peking University), Zhewei Yao (University of California, Berkeley), Amir Gholami (UC Berkeley), Zhen Dong (UC Berkeley), Sehoon Kim (University of California, Berkeley), Michael W. Mahoney (UC Berkeley), and Kurt Keutzer (EECS, UC Berkeley)	3665
Latent to Latent: A Learned Mapper for Identity Preserving Editing of Multiple Face Attributes in StyleGAN-Generated Images Siavash Khodadadeh (University of Central Florida), Shabnam Ghadar (Adobe), Saeid Motiian (Adobe), Wei-An Lin (Adobe), Ladislau Bölöni (University of Central Florida), and Ratheesh Kalarot (Adobe)	3677

Recognition II

Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection Using Meta-Learning . 3697 Vibashan VS (Johns Hopkins University), Domenick Poster (WVU), Suya You (US Army Research Laboratory), Shuowen Hu (ARL), and Vishal M. Patel (Johns Hopkins University)
Class-Balanced Active Learning for Image Classification
Single Image Object Counting and Localizing Using Active-Learning
F-CAM: Full Resolution Class Activation Maps via Guided Parametric Upscaling
Learning To Generate the Unknowns as a Remedy to the Open-Set Domain Shift
Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection
Learnable Adaptive Cosine Estimator (LACE) for Image Classification
Self-Supervised Shape Alignment for Sports Field Registration
Inpaint2Learn: A Self-Supervised Framework for Affordance Learning

Explainability, Robustness and Ethics in Vision

DAD: Data-Free Adversarial Defense at Test Time	3788
Gaurav Kumar Nayak (Indian Institute of Science, Bangalore), Ruchit	
Rawal (Indian Institute of Science), and Anirban Chakraborty (Indian	
Institute of Science)	

Physical Adversarial Attacks on an Aerial Imagery Object Detector	
Geometrically Adaptive Dictionary Attack on Face Recognition	
On the Effectiveness of Small Input Noise for Defending Against Query-Based Black-Box Attacks	
Junyoung Byun (KAIST), Hyojun Go (KAIST), and Changick Kim (KAIST)	
REGroup: Rank-Aggregating Ensemble of Generative Classifiers for Robust Predictions 3829 Lokender Tiwari (TCS Research), Anish Madan (Indraprastha Institute of Information Technology, Delhi), Saket Anand (Indraprastha Institute of Information Technology Delhi), and Subhashis Banerjee (IIT Delhi)	
Generative Adversarial Attack on Ensemble Clustering	
Chetan Kumar (University of Massachusetts Dartmouth), Deepak Kumar (University of Massachusetts Dartmouth), and Ming Shao (University of Massachusetts Dartmouth)	
Adversarial Semantic Hallucination for Domain Generalized Semantic Segmentation	
Unveiling Real-Life Effects of Online Photo Sharing	
Reconstructing Training Data From Diverse ML Models by Ensemble Inversion	
Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals	
Saloni Dash (Microsoft Research), Vineeth N Balasubramanian (Indian Institute of Technology, Hyderabad), and Amit Sharma (Microsoft Research)	
Fair Visual Recognition in Limited Data Regime Using Self-Supervision and Self-Distillation	
Pratik Mazumder (Indian Institute of Technology, Kanpur), Pravendra Singh (IIT Roorkee), and Vinay P. Namboodiri (University of Bath)	
oes Data Repair Lead to Fair Models? Curating Contextually Fair Data To Reduce Model Bias 198	
Sharat Agarwal (Indraprastha Institute of Information Technology, Delhi), Sumanyu Muku (Indian Institute of Technology Delhi), Saket Anand (Indraprastha Institute of Information Technology Delhi), and	

Chetan Arora (Indian Institute of Technology Delhi)

PoP-Net: Pose Over Parts Network for Multi-Person 3D Pose Estimation From a Depth Image 3917

Yuliang Guo (Robert Bosch LLC), Zhong Li (OPPO US Research Center), Zekun Li (OPPO US Research Center), Xiangyu Du (OPPO US Research Center), Shuxue Quan (OPPO US Research Center), and Yi Xu (OPPO US Research Center)

Improving Model Generalization by Agreement of Learned Representations From Data	
Augmentation	3927
Rowel Atienza (University of the Philippines)	

Low-Level Vision / Image Processing

Event-Based Kilohertz Eye Tracking Using Coded Differential Lighting
MEGAN: Memory Enhanced Graph Attention Network for Space-Time Video Super-Resolution 3946
Chenyu You (Yale University), Lianyi Han (Tencent America), Aosong Feng (Yale University), Ruihan Zhao (UT Austin), Hui Tang (Tecent Medical Al Lab), and Wei Fan (Tencent)
Single Image Deraining Network With Rain Embedding Consistency and Layered LSTM 3957 Yizhou Li (Tokyo Institute of Technology), Yusuke Monno (Tokyo Institute of Technology), and Masatoshi Okutomi (Tokyo Institute of Technology)
Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo
Detail Preserving Residual Feature Pyramid Modules for Optical Flow
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency
Learning From the CNN-Based Compressed Domain

MoESR: Blind Super-Resolution Using Kernel-Aware Mixture of Experts
edge-SR: Super-Resolution for the Masses
Image-Adaptive Hint Generation via Vision Transformer for Outpainting
Hyperspectral Image Super-Resolution With RGB Image Super-Resolution as an Auxiliary Task
Ke Li (ETH Zurich), Dengxin Dai (ETH Zurich), and Luc Van Gool (ETH Zurich) Zurich)
Deep Optimization Prior for THz Model Parameter Estimation
Geometry-Inspired Top-K Adversarial Perturbations
Nonnegative Low-Rank Tensor Completion via Dual Formulation With Applications to Image and Video Completion
PredStereo: An Accurate Real-Time Stereo Vision System

Author Index