2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE 2021)

Washington, DC, USA **16 – 17 December 2021**

IEEE Catalog Number: CFP21D42-POD **ISBN:**

978-1-6654-3966-4

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

CFP21D42-POD
978-1-6654-3966-4
978-1-6654-3965-7

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) CHASE 2021

Table of Contents

Message from the General Chairs	xii
Organizing Committee	xiii
Technical Program Committee	xv
Steering Committee	xviii

IEEE/ACM CHASE 2021 Conference

Regular Papers

TremorSense: Tremor Detection for Parkinson's Disease Using Convolutional Neural Network 1 Minglong Sun (William & Mary, USA), Amanda Watson (University of Pennsylvania, USA), Gina Blackwell (Virginia Commonwealth University, USA), Woosub Jung (William & Mary, USA), Shuangquan Wang (Salisbury University, USA), Kenneth Koltermann (William & Mary, USA), Noah Helm (Virginia Commonwealth University, USA), Gang Zhou (William & Mary, USA), Leslie Cloud (Virginia Commonwealth University, USA), and Ingrid Pretzer-Aboff (Virginia Commonwealth University, USA)
Machine Learning Prediction of TBI from Mobility, Gait and Balance Patterns
Improve Image-Based Skin Cancer Diagnosis with Generative Self-Supervised Learning

 RT-ACL: Identification of High-Risk Youth Patients and Their Most Significant Risk Factors to Reduce Anterior Cruciate Ligament Reinjury Risk	5
Detection and Analysis of Interrupted Behaviors by Public Policy Interventions During COVID-19	6
Guimin Dong (University of Virginia, USA), Lihua Cai (University of Virginia, USA), Shashwat Kumar (University of Virginia, USA), Debajyoti Datta (University of Virginia, USA), Laura E. Barnes (University of Virginia, USA), and Mehdi Boukhechba (University of Virginia, USA)	
Information Extraction from Patient Care Reports for Intelligent Emergency Medical Services	8
Sion Kim (University of Virginia, USA), Weishi Guo (University of Virginia, USA), Ronald Williams (University of Virginia, USA), John Stankovic (University of Virginia, USA), and Homa Alemzadeh (University of Virginia, USA)	5
 High-Confidence Data Programming for Evaluating Suppression of Physiological Alarms	0
Short Papers	

VitalCore: Analytics and Support Dashboard for Medical Device Integration	82
Hyonyoung Choi (University of Pennsylvania, USA), Amanda Lor (Penn	
Medicine, University of Pennsylvania, USA), Michael Megonegal (Penn	
Medicine, University of Pennsylvania, USA), Xiayan Ji (University of	
Pennsylvania, USA), Amanda Watson (University of Pennsylvania, USA),	
James Weimer (University of Pennsylvania, USÅ), and Insup Lee	
(University of Pennsylvania, USA)	

EDA-Based Data Stream Pattern Analysis and Peak Detection Algorithm for Substance Users ... 87 Stefan A. Bruendl (University of Massachusetts Dartmouth, USA), Hua Fang (University of Massachusetts, USA), Honggang Wang (University of Massachusetts, USA), and Edward W. Boyer (Brigham and Women's Hospital, Harvard Medical School Boston, USA)

 Sensor-Based Human Activity Recognition for Elderly In-Patients with a Luong Self-Attention Network
Extracting Fractional Inspiratory Time from Electrocardiograms
Demos and Posters
Integrating Automated Biomedical Lexicon Creation for Valley Fever Diagnosis
 NAPNEA: A Cost Effective Neonatal Apnea Detection System
Comprehensive Digital Health Intervention to Improve Delivery of Cardiac Rehabilitation 115 Zane MacFarlane (Digital Health Innovation Laboratory, Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine), Yumin Gao (Digital Health Innovation Laboratory, Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine), Nino Isakadze (Digital Health Innovation Laboratory, Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine), Erin Spaulding (Digital Health Innovation Laboratory, Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine), Francoise Marvel (Digital Health Innovation Laboratory, Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine), Francoise Marvel (Digital Health Innovation Laboratory, Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine), and Seth Martin (Digital Health Innovation Laboratory, Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine), and Seth Martin (Digital Health Innovation Laboratory, Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine),
 A High-Throughput, Online Tool for Investigating Host-Pathogen Macromolecular Interactions Buried in Scientific Literature
Fusing UWB and Depth Sensors for Passive and Context-Aware Vital Signs Monitoring

LSTM vs Plot-Based CNN for EEG Emotion Detection Tasks
A Social Robot-Based Psycho-Educational Program to Enhance Alzheimer's Caregiver Health 124 Fengpei Yuan (University of Tennessee, USA), Jordis Blackburn (University of Tennessee, USA), Charles Condon (University of Tennessee, USA), Sharon Bowland (University of Tennessee, USA), Ruth Lopez (MGH Institute of Health Professions, USA), and Xiaopeng Zhao (University of Tennessee, USA)
A Demonstration of Human-Robot Communication Based on Multiskilled Language-Image Analysis
Clinically Relevant Adaptive Modeling for Personalized Drug Dosing
 FRED: Fall Risk Evaluation Database Based on Electronic Health Record Data
Computer-Assisted Medical Billing Information Extraction: Comparing Rule-Based and end-to-end Transfer Learning Approaches

First Workshop on Artificial Intelligence and Internet of Things for Digital Health (AIIOT4DH)

Workshop Session 1: Machine and Deep Learning for e-Health

Deep Learning and its Benefits in Prediction of Patients Through Medical Images
Diabetic Retinopathy Images Classification via Multiple Instance Learning
A Machine Learning Driven Pipeline for Automated Photoplethysmogram Signal Artifact Detection
Semantically Processed Sensor Data in Health Care, Legislation Compliant, Ontologies: State of the art, Challenges and Potential Solutions
Key Generation of Biomedical Implanted Antennas Through Artificial Neural Networks 161 Lida Kouhalvandi (Dogus University, Turkey), Ladislau Matekovits (Politecnico di Torino, Italy), and Ildiko Peter (University of Medicine, Pharmacy, Science and Technology "George Emil Palade", Romania)
Automatic Extraction of Interpretable Knowledge to Predict the Survival of Patients with Heart Failure

Workshop Session 2: Multi-Sensor based e-Health platforms

A Multisensory Platform for Maximizing Collective Intelligence in the Operating Room Daniela Lo Presti (Università Campus Bio-Medico di Roma, Italy), Raffaele Gravina (University of Calabria, Italy), Carlo Massaroni (Università Campus Bio-Medico di Roma, Italy), Domenico Formica (Università Campus Bio-Medico di Roma, Italy), Emiliano Schena (Università Campus Bio-Medico di Roma, Italy), and Giancarlo Fortino (University of Calabria, Italy)	174
A Dynamic Power-Aware Strategy for Smart Health Applications Carmela Comito (CNR-ICAR, Italy), Deborah Falcone (CNR-ICAR, Italy), Agostino Forestiero (CNR-ICAR, Italy), and Giuseppe Papuzzo (CNR-ICAR, Italy)	179

TeNDER: Towards Efficient Health Systems Through e-Health Platforms Employing Multimodal

Monitoring	 5
Vassilis Solachidis (Information Technologies Institute, Centre for	
Research and Technology Hellas, Greece), Jaime Rodriguez Moreno	
(Universidad Politecnica de Madrid (UPM), Spain), Gustavo	
Hernández-Penaloza (Universidad Politecnica de Madrid (UPM), Spain),	
Nicholas Vretos (Information Technologies Institute, Centre for	
Research and Technology Hellas, Greece), Federico Álvarez (Universidad	
Politecnica de Madrid (UPM), Spain), and Petros Daras (Information	
Technologies Institute, Centre for Research and Technology Hellas,	
Greece)	
Early Detection of Eating Disorders Using Social Media	 3

Blanca Tébar (Imperial College London, UK) and Anandha Gopalan (Imperial College London, UK)

Workshop Session 3: Digital Twins systems in e-Health

Digital Twins in Cancer: State-of-the-art and open Research
Improving the Performance of Ambulance Emergency Service Using Smart Health Systems 205 Mohammad Abdeen (Faculty of Computer Science and Information Systems, Islamic University of Madinah Madinah, Saudi Arabia), Mohamed Hossam Ahmed (University of Ottawa Ottawa, Canada), Hafez Seliem (Faculty of Computer and Information Sciences Ain Shams University Cairo, Egypt), Mustafa El-Nainay (Department of Computer Engineering, AlAlamein International University Matrouh, Egypt), and Tarek Rahil Sheltami (Department of Computer Engineering Interdisciplinary Research center of Smart Mobility and Logistics King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia)
Envisioning the Future: Activity-Centred CONOPS in the Co-Design of a Sociotechnical System for Healthy Ageing
A Framework for Project Risk Assessment in Telehealth

Author Index		
--------------	--	--