2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC 2021)

Singapore 20 – 23 December 2021

IEEE Catalog Number: CFP21MCO-POD **ISBN:**

978-1-7281-8752-5

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21MCO-POD
ISBN (Print-On-Demand):	978-1-7281-8752-5
ISBN (Online):	978-1-6654-3860-5

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC) MCSoC 2021

Table of Contents

Welcome from the MCSoC 2021 Chairs	xiii
Organizing Committee	xiv
Technical Program Committee	xvi
Keynote Speakers	. XX

Multicore/Many-Core SoC Applications

FPGA-Based Implementation of the Stereo Matching Algorithm Using High-Level Synthesis Iman Firmansyah (University of Tsukuba, Japan) and Yoshiki Yamaguchi (University of Tsukuba, Japan)	1
Acceleration of Gravitation Field Analysis for Asteroids by GPU Computation Fumiya Kono (University of Aizu, Japan), Naohito Nakasato (University of Aizu, Japan), Naru Hirata (University of Aizu, Japan), and Koji Matsumoto (National Astronomical Observatory of Japan, Japan)	. 8
Accelerated On-Chip Algorithm Based on Semantic Region-Based Partial Difference Detection for LiDAR-Vision Depth Data Transmission Reduction in Lightweight Controller Systems of Autonomous Vehicle Daejin Park (Kyungpook National University, Republic of Korea) and Dongkyu Jung (Kyungpook National University, Republic of Korea)	16

Special Session: FPGA Technologies for Adaptive Computing -- I

Host Bypassing: Direct Data Piping from the Network to the Hardware Accelerator	23
A Function-Rich FPGA System of Camera Image Processing for Video Meeting Takashi Odan (Tokyo Institute of Technology, Japan), Takuto Kanamori (Tokyo Institute of Technology, Japan), and Kenji Kise (Tokyo Institute of Technology, Japan)	31

RVCoreP-32IC: An Optimized RISC-V Soft Processor Supporting the Compressed Instructions ... 38 Takuto Kanamori (Tokyo Institute of Technology, Japan) and Kenji Kise (Tokyo Institute of Technology, Japan)

Multicore/Many-Core SoC Programming and Real-Time Systems

Execution Right Delegation Scheduling Algorithm for Multiprocessor	16
Scheduling DAGs of Multi-Version Multi-Phase Tasks on Heterogeneous Real-Time Systems5 Julius Roeder (University of Amsterdam, The Netherlands), Benjamin Rouxel (University of Amsterdam, The Netherlands), and Clemens Grelck (University of Amsterdam, The Netherlands)	54
SIMD Parallel Execution on GPU from High-Level Dataflow Synthesis	52
Performance Estimation of High-Level Dataflow Program on Heterogeneous Platforms	59

Special Session: FPGA Technologies for Adaptive Computing -- II

Parallel Implementation of CNN on Multi-FPGA Cluster Yasuyu Fukushima (Keio University, Japan), Kensuke lizuka (Keio University, Japan), and Hideharu Amano (Keio University, Japan)	77
A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA Fumio Hamanaka (Tokyo Institute of Technology, Japan), Takuto Kanamori (Tokyo Institute of Technology, Japan), and Kenji Kise (Tokyo Institute of Technology, Japan)	84
A Memory-Access-Minimized BCNN Accelerator Using Nonvolatile FPGA with Only-Once-Write Shifting Daisuke Suzuki (University of Aizu, Japan), Takahiro Oka (Tohoku University, Japan), and Takahiro Hanyu (Tohoku University, Japan)	92

Algorithms, Architecture, and Hardware Acceleration for AI on the Edge -- I

- Parasitic-Aware Modelling for Neural Networks Implemented with Memristor Crossbar Array 122 Tiancheng Cao (Nanyang Technological University, Singapore), Chen Liu (Agency for Science, Technology and Research, Singapore), Yuan Gao (Agency for Science, Technology and Research, Singapore), and Wang Ling Goh (Nanyang Technological University, Singapore)

Special Session: Emerging Machine Learning and Deep Learning Models: Theory and Applications -- I

Distributed Neural Network with TensorFlow on Human Activity Recognition over Multicore TPU
EEG-Based Positive-Negative Emotion Classification Using Machine Learning Techniques 135 Yuta Kasuga (University of Aizu, Japan), Jungpil Shin (University of Aizu, Japan), Md. Al Mehedi Hasan (University of Aizu, Japan), Yuichi Okuyama (University of Aizu, Japan), and Yoichi Tomioka (University of Aizu, Japan)
CNN-Based End-to-End Autonomous Driving on FPGA Using TVM and VTA
 Surface Type Classification for Autonomous Robots Using Temporal, Statistical and Spectral Feature Extraction and Selection

(University of Aizu, Japan)

Algorithms, Architecture, and Hardware Acceleration for AI on the Edge -- II

Data Fusion Driven Lane-Level Precision Data Transmission for V2X Road Applications 157	'
Albert Budi Christian (National Yang Ming Chiao Tung University,	
Taiwan), Chih-Yu Lin (National Taiwan Ocean University, Taiwan),	
Lan-Da Van (National Yang Ming Chiao Tung University, Taiwan), and	
Yu-Chee Tseng (National Yang Ming Chiao Tung University, Taiwan)	
A Heterogeneous Full-Stack AI Platform for Performance Monitoring and Hardware-Specific	

Special Session: Emerging Machine Learning and Deep Learning Models: Theory and Applications -- II

A Distance Estimation Method to Railway Crossing Using Warning Signs
Dynamic Service Recommendation Using Lightweight BERT-Based Service Embedding in Edge Computing
Light-Weight Enhanced Semantics-Guided Neural Networks for Skeleton-Based Human Action Recognition
Ising-Based Combinatorial Clustering Using the Kernel Method

Special Session: Secure, Reliable, and Energy-Efficient Execution on MPSoCs

FPGA Based Adaptive Hardware Acceleration for Multiple Deep Learning Tasks Yufan Lu (University of Essex, UK), Xiaojun Zhai (University of Essex, UK), Sangeet Saha (University of Essex, UK), Shoaib Ehsan (University of Essex, UK), and Klaus D. McDonald-Maier (University of Essex, UK)	204
Detection of Cache Side Channel Attacks Using Thread Level Monitoring of Hardware	210
Pavitra Prakash Bhade (Indian Institute of Technology Goa, India) and	210
Sharad Sinha (Indian Institute of Technology Goa, India)	

2QoSM: A Q-Learner QoS Manager for Application-Guided Power-Aware Systems	218
Michael J. Giardino (ETH Zürich, Switzerland), Daniel Schwyn (ETH	
Zürich, Switzerland), Bonnie Ferri (Georgia Institute of Technology,	
USA), and Aldo Ferri (Georgia Institute of Technology, USA)	

Trends and Challenges in Ensuring Security for Low Power and High-Performance Embedded
SoCs
Parisa Rahimi (University of Essex, UK), Amit Kumar Singh (University
of Essex, UK), Xiaohang Wang (South China University of Technology,
China), and Alok Prakash

Special Session: Auto-Tuning for Multicore and GPU

Task Scheduling Strategies for Batched Basic Linear Algebra Subprograms on Many-Core CPUs 234

Daichi Mukunoki (RIKEN Center for Computational Science, Japan), Yusuke Hirota (University of Fukui, Japan), and Toshiyuki Imamura (RIKEN Center for Computational Science, Japan)

Portability of Vectorization-Aware Performance Tuning Expertise across System Generations . 242 Shunpei Sugawara (Tohoku University, Japan), Yoichi Shimomura (Tohoku University, Japan), Ryusuke Egawa (Tohoku University, Japan), and Hiroyuki Takizawa (Tohoku University, Japan)

Sparse Matrix Ordering Method with a Quantum Annealing Approach and Its Parameter Tuning .. 258

Tomoko Komiyama (University of Yamanashi, Japan) and Tomohiro Suzuki (University of Yamanashi, Japan)

Special Session: Low-Power and Solutions for Future SoC Design

A Highly Efficient Layout-Aware FPGA Overlay Accelerator Mapping Method Tanvir Ahmed (EdgeCortix, Inc., Japan), Johannes Maximilian Kuhn (Preferred Networks, Inc., Japan), and Ken Namura (Preferred Networks, Inc., Japan)	265
Energy Saving in a Multi-Context Coarse Grained Reconfigurable Array with Non-Volatile	
Flip-Flops	273
Aika Kamei (Keio University, Japan), Takuya Kojima (Keio University,	
Japan), Hideharu Amano (Keio University, Japan), Daiki Yokoyama	
(Shibaura Institute of Technology, Japan), Hisato Miyauchi (Shibaura	
Institute of Technology, Japan), Kimiyoshi Usami (Shibaura Institute	
of Technology, Japan), Keizo Hiraga (Sony Semiconductor Solutions	
Corp., Japan), Kenta Suzuki (Sony Semiconductor Solutions Corp.,	
Japan), and Kazuhiro Bessho (Sony Semiconductor Solutions Corp.,	
Japan)	

Special Session: Intelligent Systems and Learning Technologies: Models, Methods, and Applications -- I

Text Compression Based on an Alternative Approach of Run-Length Coding Using Burrows-Wheeler Transform and Arithmetic Coding <i>Md. Atiqur Rahman (University of Aizu, Japan), Mohamed Hamada</i> <i>(University of Aizu, Japan), and Md Asfaqur Rahman (Islamic</i> <i>University, Bangladesh)</i>	287
UI Method to Support Knowledge Creation in Hybrid Museum Experience Toru Tamahashi (University of Aizu, Japan), Rentaro Yoshioka (University of Aizu, Japan), and Takayuki Hoshino (University of Aizu, Japan & Nihon Unisys, Ltd., Japan)	292
Design of a Knowledge Experience Based Environment for Museum Data Exploration and Knowledge Creation <i>Takayuki Hoshino (Nihon Unisys, Ltd., Japan), Rentaro Yoshioka</i> <i>(University of Aizu, Japan), and Yukihide Kohira (University of Aizu, Japan)</i>	296

Embedded Neuromorphic Computing Systems

Mini-Batch Training Along Convolution Windows for Representation Learning Based on Spike-Time-Dependent-Plasticity Rule	4
Performance Comparison of TPU, GPU, CPU on Google Colaboratory over Distributed Deep Learning	2
Haklin Kimm (East Stroudsburg University, USA), Incheon Paik (University of Aizu, Japan), and Hanke Kimm (Stony Brook University, USA)	
A Network Simulator for the Estimation of Bandwidth Load and Latency Created by Heterogeneous Spiking Neural Networks on Neuromorphic Computing Communication Network	ร า
R. Kleijnen (Forschungszentrum Jülich GmbH, Germany), M. Robens (Forschungszentrum Jülich GmbH, Germany), M. Schiek (Forschungszentrum Jülich GmbH, Germany), and S. van Waasen (Forschungszentrum Jülich GmbH, Germany)	,
Configuring an Embedded Neuromorphic Coprocessor Using a RISC-V Chip for Enabling Edge Computing Applications	3

Special Session: Intelligent Systems and Learning Technologies: Models, Methods, and Applications -- II

Evaluation of Recursive Feature Elimination and LASSO Regularization-Based Optimized Feature Selection Approaches for Cervical Cancer Prediction	333
The Role of Linear Discriminant Analysis for Accurate Prediction of Breast Cancer Egwom Onyinyechi Jessica (Bayero University Kano, Nigeria), Mohamed Hamada (University of Aizu, Japan), Saratu Ilu Yusuf (Bayero University Kano, Nigeria), and Mohammed Hassan (Bayero University Kano, Nigeria)	340
An Intelligent Plant Disease Detection System for Smart Hydroponic Using Convolutional Neural Network	345
Aminu Musa (Federal University Dutse, Nigeria), Mohamed Hamada (University of Aizu, Japan), Farouq Muhammad Aliyu (Yobe State University, Nigeria), and Mohammed Hassan (Bayero University Kano, Nigeria)	5.5
A Framework and Its User Interface to Learn Machine Learning Models Atsushi Takamiya (University of Aizu, Japan), Md. Mostafizer Rahman (University of Aizu, Japan), and Yutaka Watanobe (University of Aizu, Japan)	352

Multicore/Many-Core SoC Architectures and Interconnects

Boosting CPU Performance Using Pipelined Branch and Jump Folding Hardware with Turbo Module	359
Efficient Resource Shared RISC-V Multicore Processor Md Ashraful Islam (Tokyo Institute of Technology, Japan) and Kenji Kise (Tokyo Institute of Technology, Japan)	366
Task-Level Redundancy vs Instruction-Level Redundancy against Single Event Upsets in Real-Time DAG Scheduling Lukas Miedema (University of Amsterdam, The Netherlands), Benjamin Rouxel (University of Amsterdam, The Netherlands), and Clemens Grelck (University of Amsterdam, The Netherlands)	373
RELAX: A REconfigurabLe ApproXimate Network-on-Chip Richard Fenster (Concordia University, Canada) and Sébastien Le Beux (Concordia University, Canada)	381

Operating System Platform and Real-Time Embedded Applications

Analyzable Publish-Subcribe Communication through a Wait-Free FIFO Channel for MPSoC	
Real-Time Applications	388
Saeid Dehnavi (Eindhoven University of Technology, The Netherlands),	
Dip Goswami (Eindhoven University of Technology, The Netherlands), and	
Kees Goossen's (Eindhoven University of Technology, The Netherlands)	

LUSH: Lightweight Framework for User-Level Scheduling in Heterogeneous Multicores Vasco Miguel Liang Xu (University of Pittsburgh, USA), Liam White McShane (University of Pittsburgh, USA), and Daniel Mossé (University of Pittsburgh, USA)	396
An Architecture to Enable Machine-Learning-Based Task Migration for Multi-Core Real-Time Systems Octavio Delgadillo (Fortiss GmbH, Germany), Bernhard Blieninger (Fortiss GmbH, Germany), Juri Kuhn (Fortiss GmbH, Germany), and Uwe Baumgarten (Technical University of Munich, Germany)	e 405

Author Index		
--------------	--	--