2021 International Conference on Data Mining Workshops (ICDMW 2021)

Virtual Conference 7 – 10 December 2021

Pages 1-565

IEEE Catalog Number: CFP2156B-POD ISBN: 978-1-6654-2428-8

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2156B-POD

 ISBN (Print-On-Demand):
 978-1-6654-2428-8

 ISBN (Online):
 978-1-6654-2427-1

ISSN: 2375-9232

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2021 International Conference on Data Mining Workshops (ICDMW) ICDMW 2021

Table of Contents

Message from the ICDM 2021 General Chairs	
Message from the ICDM 2021 Program Chairs	
Message from the Workshops Chairs	
Organizing Committee	xxix
NeuRec: Advanced Neural Algorithms and Theories for Recomm Systems	ıender
Incorporating Adjacent User Modeling into Session-Based Recommendation with Graph Neu	
Networks	1
Sequential Item Recommendation in the MOBA Game Dota 2	10
Alexander Dallmann (University of Würzburg, Germany), Johannes	
Kohlmann (University of Würzburg, Germany), Daniel Zoller (University	
of Würzburg, Germany), and Andreas Hotho (University of Würzburg, Germany)	
Dynamic Sequential Recommendation: Decoupling User Intent from Temporal Context	18
Wei Jiang (Alibaba Group, China), Fangquan Lin (Alibaba Group, China),	
Jihai Zhang (Alibaba Group, China), Cheng Yang (Alibaba Group, China),	
Hanwei Zhang (Alibaba Group, China), and Ziqiang Cui (Alibaba Group, China)	
A Probabilistic Perspective on Nearest Neighbor for Implicit Recommendation	27
Domokos Miklós Kelen (Institute for Computer Science and Control	
(SZTAKI), Hungary) and Andras A. Benczúr (Institute for Computer	
Science and Control (SZTAKI), Hungary)	
DynaPosGNN: Dynamic-Positional GNN for Next POI Recommendation	36
Junbeom Kim (Samsung Research, Samsung Electronics. Co., Ltd, Korea),	
Sihyun Jeong (Samsung Research, Samsung Electronics. Co., Ltd, Korea),	
Goeon Park (Samsung Research, Samsung Electronics. Co., Ltd, Korea),	
Kihoon Cha (Samsung Research, Samsung Electronics. Co., Ltd, Korea), Ilhyun Suh (Samsung Research, Samsung Electronics. Co., Ltd, Korea),	
and Byungkook Oh (Samsung Research, Samsung Electronics. Co., Ltd,	
Korea)	

CoBERT: Scientific Collaboration Prediction via Sequential Recommendation Tobias Koopmann (University of Würzburg, Germany), Konstantin Kobs (University of Würzburg, Germany), Konstantin Herud (University of Würzburg, Germany), and Andreas Hotho (University of Würzburg, Germany)	45
SynEvaRec: A Framework for Evaluating Recommender Systems on Synthetic Data Classes	55
Balanced News Neural Network for a News Recommender System Shaina Raza (Ryerson University, Canada), Syed Raza Bashir (Ryerson University, Canada), Dora D. Liu (DeepBlue Academy of Sciences, China), and Usman Naseem (The University of Sydney, Australia)	65
Embedding Normalization: Significance Preserving Feature Normalization for Click-Through Rate Prediction	75
IBFM: An Instance-Weight Balanced Factorization Machine for Sparse Prediction	85
Challenging the Long Tail Recommendation on Heterogeneous Information Network	94
ContentHE: Content-Enhanced Network Embedding for Hashtag Representation	02
SENTIRE: Sentiment Elicitation from Natural Text for Information Retrieval and Extraction	
Sentiment Analysis using Part-of-Speech-Based Feature Extraction and Game-Theoretic Rough Sets	10
Yixing Chen (University of Regina, Canada) and JingTao Yao (University of Regina, Canada)	10

A Real-Time Platform for Contextualized Conspiracy Theory Analysis	118
Automated Pipeline for Sentiment Analysis of Political Tweets Atrik Das (Nanyang Technological University, Singapore), Kushal Sai Gunturi (Nanyang Technological University, Singapore), Aditya Chandrasekhar (Nanyang Technological University, Singapore), Abhinandan Padhi (Nanyang Technological University, Singapore), and Qian Liu (Nanyang Technological University, Singapore)	128
Deep Neural Language-Agnostic Multi-task Text Classifier	136
Sentiment Analysis Framework using Data Driven Approach Md Jahedul Islam (Brac University, Bangladesh), Md Shubiour Shuvo (Brac University, Bangladesh), Tonmoy Sarker (Brac University, Bangladesh), Mohammad Zavid Parvez (Brac University, Bangladesh), and Md Anisur Rahman (Charles Sturt University, Australia)	143
A Multitask Learning Framework for Multimodal Sentiment Analysis	. 151
Interpretable Representation Learning for Personality Detection Amirmohammad Kazemeini (University of Western Ontario, Canada), Sudipta Singha Roy (University of Western Ontario, Canada), Robert E. Mercer (University of Western Ontario, Canada), and Erik Cambria (Nanyang Technological University, Singapore)	158
AspectEmo: Multi-Domain Corpus of Consumer Reviews for Aspect-Based Sentiment Analysis Jan Kocon (Wroclaw University of Science and Technology, Poland), Jarema Radom (Wroclaw University of Science and Technology, Poland), Ewa Kaczmarz-Wawryk (Institute of Polish Studies, University of Wroclaw, Poland), Kamil Wabnic (Institute of Polish Studies, University of Wroclaw, Poland), Ada Zajaczkowska (Wroclaw University of Science and Technology, Poland), and Monika Zasko-Zielinska (Institute of Polish Studies, University of Wroclaw, Poland)	. 166
DUSE: A New Benchmark Dataset for Drug User Sentiment Extraction Ashok J. Kumar (Information Science and Technology, Anna University, India), Erik Cambria (Nanyang Technological University, Singapore), and Tina Esther Trueman (Information Science and Technology, Anna University, India)	. 174

Enhancing Negation Scope Detection using Multitask Learning	179
Contextualized Embedding Based Approaches for Social Media-Specific Sentiment Analysis Harsh Sakhrani (Pune Institute of Computer Technology, India), Saloni Parekh (Pune Institute of Computer Technology, India), and Pratik Ratadiya (vCreaTek Consulting Services Pvt. Ltd., India)	186
Modelling Context with Graph Convolutional Networks for Aspect-Based Sentiment Analysis Maoyuan Zhang (Central China Normal University, PR China), Jieqiong Zhang (Central China Normal University, PR China), and Lisha Liu (Central China Normal University, PR China)	194
DMS: Data Mining for Service	
Prediction Diagnostics – Addressing Data Veracity in Predicting Batch Processes	201
Application of Machine Learning for Growth Environment Prediction in Agriculture	208
A Data-Driven Approach to Predict Hourly Bill Rates for US Contingent Workers	214
A Time-Series Analysis of How Google Trends Searches Affect Cryptocurrency Prices for Decentralized Finance and Non-Fungible Tokens	222
Intent-Based Product Collections for E-Commerce using Pretrained Language Models	228
Stochastic Schemata Exploiter-Based AutoML Hiroya Makino (Nagoya University, Japan) and Eisuke Kita (Nagoya University, Japan)	238
Confident Collaborative Metric Learning	246

Legitimacy: An Ensemble Learning Model for Credibility Based Fake News Detection	254
Application of Fractal Analysis for Customer Classification Based on Path Data Fengmei Sun (Collaborative Innovation Center for Transport Studies, Dalian Maritime University, China), Yi Zuo (Collaborative Innovation Center of Maritime Big Data & Shipping Artificial General Intelligence, Dalian Maritime University, China), Licheng Zhao (Collaborative Innovation Center for Transport Studies, Dalian Maritime University, China), and Yuta Kaneko (Department of Social System Studies, Faculty of Contemporary Social Studies, Doshisha Women's College of Liberal Arts, Japan)	262
Data-Driven Divide-and-Conquer for Estimating Build Times of 3D Objects	268
The Vehicle Routing Problem with Time Windows and Time Costs	278
Application of LSTM Models to Predict In-Store Trajectory of Customers Weizheng Zhao (Collabrative Innovation Center for Transport Studies, Dalian Maritime University, China), Yi Zuo (Navigation College, Collaborative Innovation Center of Maritime Big Data & Shipping Artificial General Intelligence, Dalian Maritime University, China), Licheng Zhao (Collabrative Innovation Center for Transport Studies, Dalian Maritime University, China), and Junhao Jiang (Navigation College, Dalian Maritime University, China)	288
CLEATED: Continual Learning and Adaptation for Time Evolving D	ata
Evaluating and Explaining Generative Adversarial Networks for Continual Learning Under Concept Drift Filip Guzy (Wroclaw University of Science and Technology, Poland), Michal Wozniak (Wroclaw University of Science and Technology, Poland), and Bartosz Krawczyk (Virginia Commonwealth University, USA)	295
Lightweight Alternatives for Hyper-Parameter Tuning in Drifting Data Streams Jesus L. Lobo (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain), Javier Del Ser (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain; University of the Basque Country (UPV/EHU), Spain), and Eneko Osaba (TECNALIA, Basque Research and Technology Alliance (BRTA), Spain)	304

A Fully Unsupervised and Efficient Anomaly Detection Approach with Drift Detection Capability
IncrLearn: Incremental classification and clustering, concept drift, novelty detection in big/fast data context
SGDOL: Self-Evolving Generative and Discriminative Online Learning for Data Stream Classification
IEBench: Benchmarking Streaming Learners on Imbalanced Evolving Data Streams
DRIFT LENS: Real-Time Unsupervised Concept Drift Detection by Evaluating per-Label Embedding Distributions
NimbleLearn: A Scalable and Fast Batch-Mode Active Learning Approach
Incremental Clustering Algorithms for Massive Dynamic Graphs
Customs Fraud Detection in the Presence of Concept Drift

Fast and Lightweight Binary and Multi-branch Hoeffding Tree Regressors Saulo Martiello Mastelini (Institute of Mathematics and Computer Science, University of São Paulo, Brazil), Jacob Montiel (AI Institute, University of Waikato, New Zealand), Heitor Murilo Gomes (AI Institute, University of Waikato, New Zealand), Albert Bifet (AI Institute, University of Waikato, New Zealand), Bernhard Pfahringer (Department of Computer Science, University of Waikato, New Zealand), and Andre C. P. L. F. de Carvalho (Institute of Mathematics and Computer Science, University of São Paulo, Brazil)	380
Crowd Behavior Detection in Videos using Statistical Physics Huiyu Mu (China agriculture university, China), Ruizhi Sun (China agriculture university, China), Gang Yuan (China agriculture university, China), Jiayao Li (China agriculture university, China), and Miao Wang (China agriculture university, China)	389
Accelerating Active Learning Image Labeling Through Bulk Shift Recommendations	398
Multi-Label kNN Classifier with Online Dual Memory on Data Stream Xihui Wang (Laboratory of Digital Sciences of Nantes, France), Pascale Kuntz (Laboratory of Digital Sciences of Nantes, France), Frank Meyer (Orange Labs, France), and Vincent Lemaire (Orange Labs, France)	405
Online Changepoint Detection on a Budget	414
Few-Shot Class-Incremental Learning with Meta-Learned Class Structures	421
HDM: High Dimensional Data Mining	
LUCKe- Connecting Clustering and Correlation Clustering	431
Implicit Hough Transform Neural Networks for Subspace Clustering	441
TensorMode Algorithm for Network Embedding in Dynamic Environments	449
ReTriM: Reconstructive Triplet Loss for Learning Reduced Embeddings for Multi-variate Time Series	460
Yash Garg (Nokia Bell Labs - AI Research, USA)	
Anomaly Detection with Dual Adversarial Training	466

Accelerating Density-Based Subspace Clustering in High-Dimensional Data 474 Jürgen Prinzbach (Offenburg University of Applied Sciences, Germany), Tobias Lauer (Offenburg University of Applied Sciences, Germany), and Nicolas Kiefer (VEGA Grieshaber KG, Germany)
Random Projection Through the Lens of Data Complexity Indicators
Causal Structure Learning of Nonlinear Additive Noise Model Based on Streaming Feature
DMBIH: Data Mining in Biomedical Informatics and Healthcare
Metagenome2Vec: Building Contextualized Representations for Scalable Metagenome Analysis 500 Sathyanarayanan Aakur (Oklahoma State University), Vineela Indla (Oklahoma State University), Vennela Indla (Oklahoma State University), Sai Narayanan (Oklahoma State University), Arunkumar Bagavathi (Oklahoma State University), Vishalini Laguduva Ramnath (Oklahoma State University), and Akhilesh Ramachandran (Oklahoma State University)
Multimodal Machine Learning for 30-Days Post-Operative Mortality Prediction of Elderly Hip Fracture Patients
Empirical Quantitative Analysis of COVID-19 Forecasting Models Yun Zhao (University of California, Santa Barbara, USA), Yuqing Wang (University of California, Santa Barbara, USA), Junfeng Liu (University of California, Santa Barbara, USA), Haotian Xia (University of California, Santa Barbara, USA), Zhenni Xu (University
of California, Santa Barbara, USA), Qinghang Hong (University of California, Santa Barbara, USA), Zhiyang Zhou (Northwestern University, USA), and Linda Petzold (University of California, Santa Barbara, USA)

LITSA: Large-scale Industrial Time Series Analysis

EnsembleNTLDetect: An Intelligent Framework for Electricity Theft Detection in Smart Grid 527 Yogesh Kulkarni (Pune Institute of Computer Technology, India), Sayf Hussain Z (Anna University, India), Krithi Ramamritham (Robert Bosch Centre for Data Science & Artificial Intelligence, IIT Madras, India), and Nivethitha Somu (IIT Bombay, India)
Attention Augmented Convolutional Transformer for Tabular Time-Series
Anomaly Detection for Multivariate Time Series on Large-Scale Fluid Handling Plant using Two-Stage Autoencoder
Towards Dynamic Structure Changes Detection in Financial Series via Causal Analysis
Forecasting of Reservoir Inflow by the Combination of Deep Learning and Conventional Machine Learning
Mining High Utility Subgraphs
Sequence Prediction using Partially-Ordered Episode Rules
Personalized Neural Architecture Search

Large-Scale Closed High-Utility Itemset Mining Jerry Chun-Wei Lin (Western Norway University of Applied Sciences, Norway), Youcef Djenouri (SINTEF Digital, Norway), Gautam Srivastava (Brandon University, Canada; China Medical University, Taiwan), and Jimmy Ming-Tai Wu (Shandong University of Science and Technology, China)	591
CHUQI-Miner: Mining Correlated Quantitative High Utility Itemsets Mourad Nouioua (Harbin Inst. of Technology (Shenzhen), China; University of Bordj Bou Arreridj, Algeria), Philippe Fournier-Viger (Harbin Inst. of Technology (Shenzhen), China), Jun-Feng Qu (Hubei University of Arts and Science, China), Jerry Chun-Wei Lin (Western Norway University of Applied Sciences (HVL), Norway), Wensheng Gan (Jinan University, China), and Wei Song (North China University of Technology, China)	599
A Unified Framework to Discover Partial Periodic-Frequent Patterns in Row and Columnar	
Temporal Databases Veena Pamalla (Sri Balaji PG college, India), So Nakamura (The University of Aizu, Japan), Likhitha Palla (The University of Aizu, Japan), Uday Kiran Rage (The University of Aizu, Japan), Yutaka Watanobe (The University of Aizu, Japan), and Koji Zettsu (NICT, Japan)	607
TopUMS: Top-k Utility Mining in Stream Data	615
Optimal Segmented Linear Regression for Financial Time Series Segmentation	62 3
MLLD: Mining and Learning in the Legal Domain	
Simplify Your Law: using Information Theory to Deduplicate Legal Documents	631
Detection of Similar Legal Cases on Personal Injury	639
Determining Standard Occupational Classification Codes from Job Descriptions in Immigration Petitions	647

Legal Entity Extraction using a Pointer Generator Network	653
DLC: Deep Learning and Clustering	
SSPF: A Simple and Scalable Parameter Free Clustering Method	. 659
Versatile Feature Learning with Graph Convolutions and Graph Structures	669
Sparse Subspace K-Means	678
Deep Embedded K-Means Clustering Wengang Guo (Tongji University, China), Kaiyan Lin (Tongji University, China), and Wei Ye (Tongji University, China)	. 686
Convolutional Variational Autoencoders for Image Clustering Ioannis Nellas (University of Thessaly, Greece), Sotiris Tasoulis (University of Thessaly, Greece), and Vassilis Plagianakos (University of Thessaly, Greece)	. 695
Model-Based Poisson co-Clustering for Attributed Networks Paul Riverain (Thales Research & Technology, Université de Paris, France), Simon Fossier (Thales Research & Technology, France), and Mohamed Nadif (Université de Paris, France)	. 703
Graph Representation Learning with Adaptive Mixtures Da Sun Handason Tam (The Chinese University of Hong Kong, Hong Kong), Siyue Xie (The Chinese University of Hong Kong, Hong Kong), and Wing Cheong Lau (The Chinese University of Hong Kong, Hong Kong)	711
Unsupervised Graph-Clustering Learning Framework for Financial news Summarization	719

SSTDM: Spatial and Spatio-Temporal Data Mining

Detecting Wandering Behavior of People with Dementia Nicklas Sindlev Andersen (Institute of Mathematics and Computer Science, University of Southern Denmark, Denmark), Marco Chiarandini (Institute of Mathematics and Computer Science, University of Southern Denmark, Denmark), Stefan Jänicke (Institute of Mathematics and Computer Science, University of Southern Denmark, Denmark), Panagiotis Tampakis (Institute of Mathematics and Computer Science, University of Southern Denmark, Denmark), and Arthur Zimek (Institute of Mathematics and Computer Science, University of Southern Denmark, Denmark)	727
Passenger Flow Forecasting on Transportation Network: Sensitivity Analysis of the Spatiotemporal Features	734
On the Unreasonable Efficiency of State Space Clustering in Personalization Tasks	742
Deriving Spatio-Temporal Trajectory Fingerprints from Mobility Data using Non-Negative Matrix Factorisation	750
Disjoint-CNN for Multivariate Time Series Classification Seyed Navid Mohammadi Foumani (Monash University, Australia), Chang Wei Tan (Monash University, Australia), and Mahsa Salehi (Monash University, Australia)	760
Functional Foot Segmentation Based on Plantar Pressure Measurements for Profiling Subjects Performing a Running Exercise	770
STONE: Signal Temporal Logic Neural Network for Time Series Classification Ruixuan Yan (Rensselaer Polytechnic Institute, USA), Agung Julius (Rensselaer Polytechnic Institute, USA), Maria Chang (IBM T.J. Watson Research Center, IBM Research, USA), Achille Fokoue (IBM T.J. Watson Research Center, IBM Research, USA), Tengfei Ma (IBM T.J. Watson Research Center, IBM Research, USA), and Rosario Uceda-Sosa (IBM T.J. Watson Research Center, IBM Research, USA)	778

DMC: Data Mining and Machine Learning in Cybersecurity

Identifying Darknet Vendor Wallets by Matching Feedback Reviews with Bitcoin Transactions 788 Xucan Chen (Georgia State University, USA), Wei Cheng (NEC Laboratories America, Inc, USA), Marie Ouellet (Georgia State University, USA), Yuan Li (North China University of Technology, China), David Maimon (Georgia State University, USA), and Yubao Wu (Georgia State University, USA)

Shedding Light in the Tunnel: Counting Flows in Encrypted Network Traffic
Static Analysis for Android Malware Detection with Document Vectors
Faster Classification using Compression Analytics
EDMML: Evolutionary Data Mining and Machine Learning
Multi-objective Feature Selection with a Sparsity-Based Objective Function and Gradient Local Search for Multi-label Classification
Automated and Efficient Sparsity-Based Feature Selection via a Dual-Component Vector
Instance Selection for Multi-Label Learning Based on a Scalable Evolutionary Algorithm
Transformer-Based Hierarchical Encoder for Document Classification
SDM: Social Data Mining in the Post-pandemic Era
Cross-Lingual COVID-19 Fake News Detection Jiangshu Du (University of Illinois at Chicago, USA), Yingtong Dou (University of Illinois at Chicago, USA), Congying Xia (University of Illinois at Chicago, USA), Limeng Cui (Pennsylvania State University, USA), Jing Ma (Hong Kong Baptist University, Hong Kong), and Philip Yu (University of Illinois at Chicago, USA)
Patient Preferences: An Unexplored Area in the Post-Pandemic Era

A Sentiment-Aware Delightful Walking Route Recommendation System Considering the Scenery	
	867
Effects of Stimulus Checks on Spending Patterns of Different Economic Groups	873
Analysis of User Behavior in a C2C Platform During COVID-19 Pandemic	878
Analyzing the Bad-Words in Tweets of Twitter Users to Discover the Mental Health Happiness Index and Feel-Good-Factors	882
HappyRec: Evaluation of a "Happy Spot" Recommendation System Aimed at Improving Mental Well-Being	889
Online Partisan Polarization of COVID-19 Zachary Yang (McGill University, Mila - Quebec AI Institute, Canada), Anne Imouza (Université de Montréal, Canada), Kellin Pelrine (McGill University, Mila - Quebec AI Institute, Canada), Sacha Lévy (McGill University, Mila - Quebec AI Institute, Canada), Jiewen Liu (McGill University, Mila - Quebec AI Institute, Canada), Gabrielle Desrosiers-Brisebois (Université de Montréal, Canada), Jean-François Godbout (Université de Montréal, Canada), André Blais (Université de Montréal, Canada), and Reihaneh Rabbany (McGill University, Mila - Quebec AI Institute, Canada)	893
OEDM: Optimization Based Techniques for Emerging Data Mining Problems	
Mixture Gaussian Prototypes for Few-Shot Learning Ruijin Jiang (Beijing University of Posts and Telecommunications, China) and Zhaohui Cheng (China University of Geosciences, China)	902

Overview of Optimization Algorithms for Large-Scale Support Vector Machines)9
Machine Learning and Deep Learning Methods used in Safety Management of Nuclear Power Plants: A Survey	1 <i>7</i>
SCORER-Gap: Sequentially Correlated Rules for Event Recommendation Considering Gap Size 92 Ludwig Zellner (LMU Munich, Germany), Janina Sontheim (LMU Munich, Germany), Florian Richter (LMU Munich, Germany), Gabriel Lindner (LMU Munich, Germany), and Thomas Seidl (LMU Munich, Germany)	25
IAAA: Intelligence-Augmented Anomaly Analytics	
Fake Reviewer Group Detection in Online Review Systems	35
A Human-in-the-Loop Approach Based on Explainability to Improve NTL Detection	1 3
Cross Network Representation Matching with Outliers	51
Deep Video Anomaly Detection: Opportunities and Challenges	59
Early Prediction of Hate Speech Propagation	57
Surrogate Supervision-Based Deep Weakly-Supervised Anomaly Detection	75

Temporal Graph Representation Learning for Detecting Anomalies in E-Payment Systems
OAB — An Open Anomaly Benchmark Framework for Unsupervised and Semisupervised Anomaly Detection on Image and Tabular Data Sets
Neural Architecture Search and Multi-Objective Evolutionary Algorithms for Anomaly Detection
SFE-TSDM: Systematic Feature Engineering for Time-Series Data Mining
A Fast Sorting-Based Aggregation Method for Symbolic Time Series Representation
Feature Selection for Multivariate Time Series via Network Pruning
Time Series Ordinal Regression for Supporting the Storage of Temperature Sensitive Medication in Domestic Refrigerators
An Empirical Evaluation of Time-Series Feature Sets
Evaluating Time Series Predictability via Transition Graph Analysis
Comparison of Variant Principal Component Analysis using New RNN-Based Framework for Stock Prediction

Data Mining on Extremely Long Time-Series Scott Simmons (University of Auckland, New Zealand), Louis Jarvis (University of Auckland, New Zealand), David Dempsey (University of Canterbury, New Zealand), and Andreas W. Kempa-Liehr (University of Auckland, New Zealand; Freiburg Materials Research Center, University of Freiburg, Germany)	1057
Feature Selection on a Flare Forecasting Testbed: A Comparative Study of 24 Methods	1067
PhD Forum	
Deep Reinforcement Learning Task for Portfolio Construction Boris Belyakov (National Research University Higher School of Economics, Russia) and Dmitry Sizykh (National Research University Higher School of Economics, Russia)	1077
Self-Supervised Source Code Annotation from Related Research Papers Pierre Haritz (Technical University Dortmund, Germany), Lukas Pfahler (Technical University Dortmund, Germany), Thomas Liebig (Technical University Dortmund, Germany), and Helena Kotthaus (ML2R, Germany)	1083
A Gamified Approach to Automatically Detect Biased Wording and Train Critical Reading	1085
Early Detection of Atmospheric Turbulence for Civil Aircraft: A Data Driven Approach	1087
Multi-channel Convolution Neural Network for Gas Mixture Classification YongKyung Oh (Ulsan National Institute of Science and Technology (UNIST), Republic of Korea) and Sungil Kim (Ulsan National Institute of Science and Technology (UNIST), Republic of Korea)	1094
An Interdisciplinary Approach for the Automated Detection and Visualization of Media Bias in News Articles Timo Spinde (University of Wuppertal)	1096
A Knowledge-Aware and Time-Sensitive Financial News Recommendation System Based on Firm Relation Derivation	

Optimal Option Hedging with Policy Gradient	1112
Bo Xiao (City University of Hong Kong, China), Wuguannan Yao (City	
University of Hong Kong, China), and Xiang Zhou (City University of	
Hong Kong, Hong Kong Institute of Data Science, China)	

Author Index