2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC 2021)

Virtual Conference 17-18 December 2021

IEEE Catalog Number: CFP21176-POD **ISBN:**

978-1-6654-1017-5

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP21176-POD 978-1-6654-1017-5 978-1-6654-1016-8 1094-7256

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC) **HiPC 2021**

Table of Contents

Message from the HiPC 2021 General Co-chairs	xii
Message from the HiPC 2021 Program Chairs	xiv
HiPC 2021 Organization	xvi
HiPC 2021 Steering Committee	
HiPC 2021 Technical Program Committee	xviii
Keynote 1: Jingren Zhou	xxi
Keynote 2: Adam Belay	
Keynote 3: Michela Taufer	xxiii
HiPC 2021 Technical Program	xxiv

Technical Session 1: Scalable Algorithms and Systems for Data Science part 1

Parallel Actors and Learners: A Framework for Generating Scalable RL Implementations
DEISA: Dask-Enabled In Situ Analytics
A Model of Graph Transactional Coverage Patterns with Applications to Drug Discovery
Faster Parallel Training of Word Embeddings31Eliza Wszola (ETH Zurich, Switzerland), Martin Jaggi (School of Computer and Communication Sciences, EPFL, Switzerland), and Markus Püschel (ETH Zurich, Switzerland)

CMAP-LAP: Configurable Massively Parallel Solver for Lattice Problems	42
Nariaki Tateiwa (Kyushu University, Japan), Yuji Shinano (Zuse	
Institute Berlin (ZIB), Germany), Keiichiro Yamamura (Kyushu	
University, Japan), Akihiro Yoshida (Kyushu University, Japan), Shizuo	
Kaji (Kyushu University, Japan), Masaya Yasuda (Rikkyo University,	
Japan), and Katsuki Fujisawa (Kyushu University, Japan)	
/ulConn: User-Transparent I/O Subsystem for High-Performance Parallel File Systems	53
Hwajung Kim (Seoul National University, Republic of Korea), Jiwoo Bang	
(Seoul National University, Republic of Korea), Dong Kyu Sung (Seoul	
National University, Republic of Korea), Hyeonsang Eom (Seoul National	
University, Republic of Korea), Heon Y. Yeom (Seoul National	
University, Republic of Korea), and Hanul Sung (Sangmyung University,	
Republic of Korea)	

Technical Session 2: HPC Algorithms

Monte Carlo Tree Search for Task Mapping onto Heterogeneous Platforms
 Shared-Memory Implementation of the Karp-Sipser Kernelization Process
 How to Avoid Zero-Spacing in Fractionally-Strided Convolution? A Hardware-Algorithm Co-Design Methodology
PPBT: A High Performance Parallel Search Tree
Deciding Non-Compressible Blocks in Sparse Direct Solvers Using Incomplete Factorization 101 Esragul Korkmaz (Univ. Bordeaux Talence, France), Mathieu Faverge (Univ. Bordeaux Talence, France), Pierre Ramet (Univ. Bordeaux Talence, France), and Grégoire Pichon (Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, France)

Technical Session 3: HPC Applications

Efficient Parallel Algorithms for Computing Percolation Centrality	
Athreya Chandramouli (International Institute of Information	
Technology, Hyderabad), Sayantan Jana (International Institute of	
Information Technology, Hyderabad), and Kishore Kothapalli	
(International Institute of Information Technology, Hyderabad)	

Accelerating JPEG Decompression on GPUs
 Towards Zero-Waste Recovery and Zero-Overhead Checkpointing in Ensemble Data Assimilation 131 Kai Keller (Barcelona Supercomputing Center (BSC-CNS), Spain), Adrian Cristal Kestelman (Barcelona Supercomputing Center (BSC-CNS), Spain), and Leonardo Bautista Gomez (Barcelona Supercomputing Center (BSC-CNS), Spain)
Predictive Analysis of Large-Scale Coupled CFD Simulations with the CPX Mini-App
The 16,384-Node Parallelism of 3D-CNN Training on an Arm CPU Based Supercomputer

Technical Session 4: HPC Architecture and System Software

iPUG for Multiple Graphcore IPUs: Optimizing Performance and Scalability of Parallel Breadth-First Search	162
Luk Burchard (Simula Research Laboratory, Norway), Xing Cai (Norway University of Oslo, Norway), and Johannes Langguth (Simula Research Laboratory, Norway BI Norwegian Business School, Norway)	
Empirical Analysis of Architectural Primitives for NVRAM Consistency Arun Kp (Indian Institute of Technology Kanpur, India), Debadatta Mishra (Indian Institute of Technology Kanpur, India), and Biswabandan Panda (Indian Institute of Technology Bombay, India)	172
JACC: An OpenACC Runtime Framework with Kernel-Level and Multi-GPU Parallelization Kazuaki Matsumura (Barcelona Supercomputing Center (BSC)), Simon Garcia De Gonzalo (Barcelona Supercomputing Center (BSC)), and Antonio	182

J. Peña (Barcelona Supercomputing Center (BSC))

Technical Session 5: HPC Algorithms and Architecture

Anti-Section Transitive Closure	
Oded Green (NVIDIA), Zhihui Du (New Jersey Institute of Technology),	
Sanyamee Patel (New Jersey Institute of Technology), Zehui Xie	
(Stevens Institute of Technology), Hang Liu (Stevens Institute of	
Technology), and David A. Bader (New Jersey Institute of Technology)	

Column-Segmented Sparse Matrix-Matrix Multiplication on Multicore CPUs Xiaojing An (Georgia Institute of Technology, USA) and Ümit V. Çatalyürek (Georgia Institute of Technology, USA; Amazon Web Services)	202
Multi-stage Memory Efficient Strassen's Matrix Multiplication on GPU Arjun Gopala Krishnan (Concordia University, Canada) and Dhrubajyoti Goswami (Concordia University, Canada)	,212
Optimizing k-Path Selection for Randomized Interconnection Networks Md Nahid Newaz (Oakland University, USA) and Md Atiqul Mollah (Oakland University, USA)	222
Dynamic Voltage and Frequency Scaling to Improve Energy-Efficiency of Hardware Accelerators	. 232

Technical Session 6: HPC System Software

Adaptive Placement of Data Analysis Tasks for Staging Based In-Situ Processing
HEALS: A Parallel eALS Recommendation System on CPU/GPU Heterogeneous Platforms
Shrinking Sample Search Algorithm for Automatic Tuning of GPU Kernels
Towards Architecture-Aware Hierarchical Communication Trees on Modern HPC Systems

Technical Session 7: Scalable Algorithms and Systems for Data Science part 2

DistMILE: A Distributed Multi-level Framework for Scalable Graph Embedding	
Yuntian He (The Ohio State University), Saket Gurukar (The Ohio State	
University), Pouya Kousha (The Ohio State University), Hari Subramoni	
(The Ohio State Ŭniversity), Dhabaleswar K. Panda (The Ohio State	
University), and Srinivasan Parthasarathy (The Ohio State University)	

Model-Based Reinforcement Learning for Elastic Stream Processing in Edge Computing 292 Jinlai Xu (University of Pittsburgh, USA) and Balaji Palanisamy (University of Pittsburgh, USA)

Layout-Aware Hardware-Assisted Designs for Derived Data Types in MPI)2
Kaushik Kandadi Suresh (The Ohio State University, USA), Bharath	
Ramesh (The Ohio State University, USA), Chen Chun Chen (The Ohio	
State University, USA), Seyedeh Mahdieh Ghazimirsaeed (The Ohio State	
University, USA), Mohammadreza Bayatpour (The Ohio State University,	
USA), Aamir Shafi (The Ohio State University, USA), Hari Subramoni	
(The Ohio State University, USA), and Dhabaleswar K. Panda (The Ohio	
State University, USA)	
Parallel Algorithms for Efficient Computation of High-Order Line Graphs of Hypergraphs	2
Xu T. Liu (Washington State University; Pacific Northwest National	
Lab), Jesun Firoz (Pacific Northwest National Lab), Andrew Lumsdaine	
(Pacific Northwest National Lab: University of Washington, USA), Cliff	
Joslyn (Pacific Northwest National Lab), Sinan Aksoy (Pacific	
Northwest National Lab), Brenda Praggastis (Pacific Northwest National	

Lab), and Assefaw H. Gebremedhin (Washington State University)

Technical Session 8: Scalable Algorithms and Systems for Data Science part 3

Asynchronous I/O Strategy for Large-Scale Deep Learning Applications Sunwoo Lee (Northwestern University), Qiao Kang (Northwestern University), Kewei Wang (Northwestern University), Jan Balewski (National Energy Research Scientific Computing Center), Alex Sim (Lawrence Berkeley National Laboratory), Ankit Agrawal (Northwestern University), Alok Choudhary (Northwestern University), Peter Nugent (Lawrence Berkeley National Laboratory), Kesheng Wu (Lawrence Berkeley National Laboratory), and Wei-keng Liao (Northwestern University)	322
SYMBIOMON: A High Performance, Composable Monitoring Service Srinivasan Ramesh (University of Oregon), Robert Ross (Argonne National Laboratory), Matthieu Dorier (Argonne National Laboratory), Allen Malony (University of Oregon), Philip Carns (Argonne National Laboratory), and Kevin Huck (University of Oregon)	332
Load-Balancing Parallel I/O of Compressed Hierarchical Layouts Ke Fan (University of Alabama at Birmingham, USA), Duong Hoang (University of Utah, USA), Steve Petruzza (Utah State University, USA), Thomas Gilray (University of Alabama at Birmingham, USA), Valerio Pascucci (University of Utah, USA), and Sidharth Kumar (University of Alabama at Birmingham, USA)	343
CUDA-DClust+: Revisiting Early GPU-Accelerated DBSCAN Clustering Designs Madhav Poudel (Northern Arizona University, USA) and Michael Gowanlock (Northern Arizona University, USA)	354

HiPC 2021 Short Papers

Performance of Local Push Algorithms for Personalized PageRank on Multi-core Platforms
 BEE Orchestrator: Running Complex Scientific Workflows on Multiple Systems
OpenACC Multi-GPU Approach for WSM6 Microphysics
 Large-Message Nonblocking MPI_Iallgather and MPI_Ibcast Offload via BlueField-2 DPU
Optimizing Multi-range Based Error-Bounded Lossy Compression for Scientific Datasets
 An In-Depth I/O Pattern Analysis in HPC Systems
 FaaSter: Accelerated Functions-as-a-Service with Heterogeneous GPUs
RSP-Hist: Approximate Histograms for Big Data Exploration on Hadoop Clusters
A Programming API Implementation for Secure Data Analytics Applications with Homomorphic Encryption on GPUs

A Fused Inference Design for Pattern-Based Sparse CNN on Edge Devices	124
Cloud-Based Urgent Computing for Forest Fire Spread Prediction Under Data Uncertainties 4 Edigley Fraga (Universitat Autònoma de Barcelona, Spain), Ana Cortés (Universitat Autònoma de Barcelona, Spain), Tomàs Margalef (Universitat Autònoma de Barcelona, Spain), and Porfideo Hernández (Universitat Autònoma de Barcelona, Spain)	430
Exploring Thread Coarsening on FPGA	436
PILOT: a Runtime System to Manage Multi-tenant GPU Unified Memory Footprint	442
A Computational Technique for Parallel Solution of Diagonally Dominant Banded Linear Systems	448

thor Index
