2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA 2021)

Virtual Conference 13-16 December 2021

Pages 1-594

IEEE Catalog Number: CFP21592-POD **ISBN:**

978-1-6654-4338-8

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21592-POD
ISBN (Print-On-Demand):	978-1-6654-4338-8
ISBN (Online):	978-1-6654-4337-1

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) ICMLA 2021

Table of Contents

Preface	xxxviii
Organizing Committee	xl
Program Committee	xli
Keynotes	xlvi

Deep Adversarial Networks-I

Messing Up 3D Virtual Environments: Transferable Adversarial 3D Objects
Character-Level Adversarial Examples in Arabic
TopKConv: Increased Adversarial Robustness Through Deeper Interpretability
Universal Adversarial Attack on Deep Learning Based Prognostics
Feature Popularity Between Different Web Attacks with Supervised Feature Selection Rankers30 Richard Zuech (Florida Atlantic University, USA), John Hancock (Florida Atlantic University, USA), and Taghi M. Khoshgoftaar (Florida Atlantic University, USA)
Improved Attribute Manipulation in the Latent Space of StyleGAN for Semantic Face Editing 38 Aashish Rai (National Institute of Technology, India), Clara Ducher (McGill University, Canada), and Jeremy R. Cooperstock (McGill University, Canada)

PollenGAN: Synthetic Pollen Grain Image Generation for Data Augmentation
 ECG-Adv-GAN: Detecting ECG Adversarial Examples with Conditional Generative Adversarial Networks
Self-Attention Mechanism in GANs for Molecule Generation
Guided-Generative Network for Noise Detection in Monte-Carlo Rendering

ML/DL Applications-I

Detection of Endoscope Withdrawal Time in Colonoscopy Videos
Contraband Materials Detection Within Volumetric 3D Computed Tomography Baggage Security Screening Imagery
ME-TSRN for Thermal Sensation Recognition via Facial Micro-Expression
Disease Prediction Based on Individual's Medical History using CNN
A Novel Convolutional Neural Network for Pavement Crack Segmentation

CiPSI and CiPSINet: a New Dataset and Network for Finding Cars in Panchromatic Satellite Images	100
Recurrence Plot Spacial Pyramid Pooling Network for Appliance Identification in Non-Intrusive Load Monitoring Marc Wenninger (Technische Hochschule Rosenheim, Germany), Sebastian P. Bayerl (Technische Hochschule Nürnberg Georg Simon Ohm, Germany), Andreas Maier (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany), and Jochen Schmidt (Technische Hochschule Rosenheim, Germany)	108
Seed Classification using Synthetic Image Datasets Generated from Low-Altitude UAV Imagery Venkata Siva Kumar Margapuri (Kansas State University, USA), Niketa Penumajji (Kansas State University, USA), and Mitchell Neilsen (Kansas State University, USA)	116
Identifying Catheter and Line Position in Chest X-Rays using GANs Milan Aryal (Marquette University, USA) and Nasim Yahyasoltani (Marquette University, USA)	122
Damage Estimation and Localization from Sparse Aerial Imagery René García Franceschini (Institute for Data, Systems and Society, Massachusetts Institute of Technology), Jeffrey Liu (MIT Lincoln Laboratory), and Saurabh Amin (Massachusetts Institute of Technology)	128

Clustering and Anomaly Detection-I

Automated Antenna Testing using Encoder-Decoder-Based Anomaly Detection	
ComFu: Improving Visual Clustering by Commonality Fusion	
CoCluBERT: Clustering Machine Learning Source Code	
Novelty-Based Generalization Evaluation for Traffic Light Detection	

Anomaly Attribution of Multivariate Time Series using Counterfactual Reasoning
Multi-slice Clustering for 3-Order Tensor
A Multi-scale A Contrario Method for Unsupervised Image Anomaly Detection
Kernel Ridge Reconstruction for Anomaly Detection: General and Low Computational Reconstruction 185 Yasutaka Furusho (Toshiba Corporation, Japan), Shuhei Nitta (Toshiba Corporation, Japan), and Yukinobu Sakata (Toshiba Corporation, Japan)

NLP

Emotion Recognition and Sentiment Classification using BERT with Data Augmentation and Emotion Lexicon Enrichment	. 191
A Data-Driven Affective Text Classification Analysis Saeid Pourroostaei Ardakani (University of Nottingham Ningbo China, China), Can Zhou (University of Nottingham Ningbo China, China), Xuting Wu (University of Nottingham Ningbo China, China), Yingrui Ma (University of Nottingham Ningbo China, China), and Jizhou Che (University of Nottingham Ningbo China, China)	199
End-to-End Natural Language Understanding Pipeline for Bangla Conversational Agents Fahim Shahriar Khan (Islamic University of Technology), Mueeze Al Mushabbir (Islamic University of Technology), Mohammad Sabik Irbaz (Pioneer Alpha Ltd.), and MD Abdullah Al Nasim (Pioneer Alpha Ltd.)	205
On Natural Language Processing Applications for Military Dialect Classification Charith Gunasekara (Government of Canada, Canada), Tobias Carryer (Queen's University, Canada), and Matt Triff (Government of Canada, Canada)	211
KerasBERT: Modeling the Keras Language Connor Shorten (Florida Atlantic University, USA) and Taghi M. Khoshgoftaar (Florida Atlantic University, USA)	219

Retrieval Enhanced Ensemble Model Framework for Rumor Detection on Micro-Blogging Platforms Rishab Sharma (University of British Columbia, Canada), Fatemeh H. Fard (University of British Columbia, Canada), and Apurva Narayan (University of British Columbia, Canada)	227
COVID-HateBERT: A Pre-Trained Language Model for COVID-19 Related Hate Speech Detection Mingqi Li (Clemson University, USA), Song Liao (Clemson University, USA), Ebuka Okpala (Clemson University, USA), Max Tong (Clemson University, USA), Matthew Costello (Clemson University, USA), Long Cheng (Clemson University, USA), Hongxin Hu (University at Buffalo, USA), and Feng Luo (Clemson Unviersity, USA)	233
A Machine Learning Pipeline to Examine Political Bias with Congressional Speeches Prasad Hajare (Oklahoma State University), Sadia Kamal (Oklahoma State University), Siddharth Krishnan (UNC Charlotte), and Arunkumar Bagavathi (Oklahoma State University)	239
Identifying Duplicate Police Reports José Alan Firmiano Araújo (Federal University of Ceará, Brazil) and Ticiana Linhares Coelho da Silva (Federal University of Ceará, Brazil)	244

Learning Methods

Discrete Latent Variables Discovery and Structure Learning in Mixed Bayesian Networks	8
 IVDR: Imitation Learning with Variational Inference and Distributional Reinforcement Learning to find Optimal Driving Strategy	6
Pairwise Margin Maximization for Deep Neural Networks	3
 Progressive Transmission and Inference of Deep Learning Models	1
An Effective Baseline for Robustness to Distributional Shift	8
On Learning Probabilistic Partial Lexicographic Preference Trees	6

Towards Knowledge-Aware Few-Shot Learning with Ontology-Based n-Ball Concept Embeddings 292

Mirantha Jayathilaka (University of Manchester, UK), Tingting Mu (University of Manchester, UK), and Uli Sattler (University of Manchester, UK)

Batch and Online Variational Learning of Hierarchical Pitman-Yor Mixtures of Multivariate	
Beta Distributions	298
Narges Manouchehri (Concordia University, Canada), Nizar Bouguila	
(Concordia University, Canada), and Wentao Fan (Huaqiao University,	
China)	

Video Analysis and Tracking

Current Advances on Deep Learning-Based Human Action Recognition from Videos: A Survey 304 Yixiao Zhang (Loughborough University, UK), Baihua Li (Loughborough University, UK), Hui Fang (Loughborough University, UK), and Qinggang Meng (Loughborough University, UK)
Vehicle Tracking with Crop-Based Detection
Detecting Freezing of Gait in Parkinson's Disease Patient via Deep Residual Network
Improved Deep Representation Learning for Human Activity Recognition using IMU Sensors 326 Niall Lyons (Infineon Technologies, Ireland), Avik Santra (Infineon Technologies, Germany), and Ashutosh Pandey (Infineon Technologies, CA)
Sensor-Based Obsessive-Compulsive Disorder Detection With Personalised Federated Learning 333 Kristina Kirsten (Hasso Plattner Institute, Germany), Bjarne Pfitzner (Hasso Plattner Institute, Germany), Lando Löper (Hasso Plattner Institute, Germany), and Bert Arnrich (Hasso Plattner Institute, Germany)
Enhancing Siamese Visual Tracking with Background Relations

Few-Shot Classification for Human Context Recognition using Smartphone Data Traces	. 345
Luke Buquicchio (Worcester Polytechnic Institute), Walter Gerych	
(Worcester Polytechnic Institute), Abdulaziz Alajaji (Worcester	
Polytechnic Institute), Kavin Chandrasekaran (Worcester Polytechnic	
Institute), Hamid Mansoor (Worcester Polytechnic Institute), Elke	
Rundensteiner (Worcester Polytechnic Institute), and Emmanuel Agu	
(Worcester Polytechnic Institute)	
Step Detection using SVM on NURVV Trackers	. 351
Didier Lopes (Nurvv, UK) and Grant Trewartha (NURVV, UK)	

ML/DL Applications in Finance

Dual-CLVSA: A Novel Deep Learning Approach to Predict Financial Markets with Sentiment Measurements Jia Wang (University of Massachusetts Lowell), Harry Zhu (University of Massachusetts Lowell), Jiancheng Shen (Soochow University), Yu Cao (University of Massachusetts Lowell), and Benyuan Liu (University of Massachusetts Lowell)	357
Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning Haoran Wang (The Vanguard Group, Inc., USA) and Shi Yu (The Vanguard Group, Inc., USA)	365
Robust Collaborative Fraudulent Transaction Detection using Federated Learning Delton Myalil (TCS Research, India), Rajan M. A. (TCS Research, India), Manoj Apte (TCS Research, India), and Sachin Lodha (TCS Research, India)	373
CrypTop12: A Dataset for Cryptocurrency Price Movement Prediction from Tweets and Historical Prices	379
Financial Time Series Forecasting Enriched with Textual Information Lord Flaubert Steve Ataucuri Cruz (Universidade Federal de São Carlos, Brazil) and Diego Furtado Silva (Universidade Federal de São Carlos, Brazil)	385
Temporal Debiasing using Adversarial Loss Based GNN Architecture for Crypto Fraud Detection	391
Intra-Day Price Simulation with Generative Adversarial Modelling of the Order Flow Ye-Sheen Lim (University College London, United Kingdom) and Denise Gorse (University College London, United Kingdom)	397

Con Connections: Detecting Fraud from Abstracts using Topological Data Analysis 40	3
Sarah Tymochko (Pacific Northwest National Laboratory, USA), Julien	
Chaput (University of Texas El Paso, USA), Timothy Doster (Pacific	
Northwest National Laboratory, USA), Emilie Purvine (Pacific Northwest	
National Laboratory, USA), Jackson Warley (Pacific Northwest National	
Laboratory, USA), and Tegan Emerson (Pacific Northwest National	
Laboratory, USA; University of Texas El Paso, USA; Colorado State	
University, USA)	
Modeling Approaches for Silent Attrition Prediction in Payment Networks	9
Lalasa Dheekollu (AI Garage, Mastercard, India), Hardik Wadhwa (AI	
Garage, Mastercard, India), Siddharth Vimal (AI Garage, Mastercard,	
India), Anubhav Gupta (AI Garage, Mastercard, India), Siddhartha	
Asthana (AI Garage, Mastercard, India), Ankur Arora (AI Garage,	
Mastercard, India), and Smriti Gupta (AI Garage, Mastercard, India)	

Sequences and Time Series Modelling and Classification

A Markov Decision Processes Modeling for Curricular Analytics Ahmad Slim (Lebanese American University), Husain Al Yusuf (University of Arizona), Nadine Abbas (Lebanese American University), Chaouki T. Abdallah (Georgia Institute of Technology), Gregory L. Heileman (University of Arizona), and Ameer Slim (University of New Mexico)	. 415
Deep Semi-Supervised Learning for Time Series Classification Jann Goschenhofer (LMU Munich, Germany;Fraunhofer Institute for Integrated Circuits (IIS), Germany), Rasmus Hvingelby (Fraunhofer Institute for Integrated Circuits (IIS), Germany), David Ruegamer (LMU Munich, Germany), Janek Thomas (LMU Munich, Germany), Moritz Wagner (Fraunhofer Institute for Integrated Circuits (IIS), Germany), and Bernd Bischl (LMU Munich, Germany;Fraunhofer Institute for Integrated Circuits (IIS), Germany)	422
Estimating the Variance of Return Sequences for Exploration Zerong Xi (University of Central Florida, USA) and Gita Sukthankar (University of Central Florida, USA)	429
Sequence Model-Based End-to-End Solar Flare Classification from Multivariate Time Series Data	435
Ali Ahsan Muhummad Muzaheed (New Mexico State University, USA), Shah Muhammad Hamdi (New Mexico State University, USA), and Soukaina Filali Boubrahimi (Utah State University, USA)	

 Aircraft Numerical "Twin": A Time Series Regression Competition	141
Causal Inference in Non-Linear Time-Series using Deep Networks and Knockoff Counterfactuals	149
 LCCspm: L-Length Closed Contiguous Sequential Patterns Mining Algorithm to Find Frequent Athlete Movement Patterns from GPS	155
Transform-Based Tensor Auto Regression for Multilinear Time Series Forecasting	461
Time Series Data Augmentation using Time-Warped Auto-Encoders	167

Reinforcement Learning-I

Probabilistic Multi-knowledge Transfer in Reinforcement Learning	471
Daniel Fernández (Universidad Carlos III de Madrid, Spain), Fernando	
Fernández (Universidad Carlos III de Madrid, Spain), and Javier García	
(Universidad Carlos III de Madrid, Spain)	

 AlphaRA: An AlphaZero Based Approach to Redundancy Analysis	77
Building Action Sets in a Deep Reinforcement Learner 44 Yongzhao Wang (University of Michigan, USA), Arunesh Sinha (Singapore 44 Management University, Singapore), Sky Ch-Wang (Columbia University, USA), and Michael P. Wellman (University of Michigan, USA) 44	84
Multi-agent Deep Reinforcement Learning for Walker Systems	.90
SoCRATES: System-on-Chip Resource Adaptive Scheduling using Deep Reinforcement Learning . 4 <i>Tegg Sung (EpiSys Science, Inc., USA) and Bo Ryu (EpiSys Science, Inc., USA)</i>	96
Predicting Real-Time Scientific Experiments using Transformer Models and Reinforcement Learning	02
Towards Real-World Deployment of Reinforcement Learning for Traffic Signal Control	07
A Data-Efficient Reinforcement Learning Method Based on Local Koopman Operators	15

Feature Extraction and Selection

Feature Subset Selection Based on Redundancy Maximized Clusters	
Md. Hasan Tarek (Institute of Information Technology, University of	
Dhaka, Bangladesh), Md. Eusha Kadir (Institute of Information	
Technology, University of Dhaka, Bangladesh), Sádia Sharmin (Computer	
Science and Engineering, Islamic University of Technology,	
Bangladesh), Abu Ashfaqur Sajib (Genetic Éngineering and	
Biotechnology, University of Dhaka, Bangladesh), Amin Ahsan Ali	
(Computer Science and Engineering, Independent University,	
Bangladesh), and Mohammad Shoyaib (Institute of Information	
Technology, University of Dhaka, Bangladesh)	

Fast Tensor Singular Value Decomposition using the Low-Resolution Features of Tensors
SUPRDAD: A Robust Feature Extractor Better Recognizes Low-Prevalent Retinal Diseases
Principal Component Analysis and Entropy-Based Selection for the Improvement of Bug Triage 541 Vaskar Nath (University of Toronto, Canada), David Sheldon (Programmable Solutions Group, Intel Corporation, USA), and John Alphonso-Gibbs (Programmable Solutions Group, Intel Corporation, USA)
Use of Embedding Spaces for Transferring Robot Skills in Diverse Sensor Settings
Depression Detection using Combination of sMRI and fMRI Image Features
Large-Scale Curb Extraction Based on 3D Deep Learning and Iterative Refinement Post-Processing
Tiny Generative Image Compression for Bandwidth-Constrained Sensor Applications
Identification and Validation of a Radiomic Signature for Predicting Survival Outcomes in non-Small-Cell Lung Cancer Treated with Radiation Therapy

ML/DL Applications-II

575
582

Outperforming Clinical Practices in Breast Cancer Detection: A Superior Dense Neural Network in Classification and False Negative Reduction Patrick Bujok (Aarhus University, Denmark), Maria Jensen (Aarhus University, Denmark), Steffen M. Larsen (Aarhus University, Denmark), and Robert A. Alphinas (Aarhus University, Denmark)	589
Depression Screening using Deep Learning on Follow-up Questions in Clinical Interviews Ricardo Flores (Worcester Polytechnic Institute, USA), ML Tlachac (Worcester Polytechnic Institute, USA), Ermal Toto (Worcester Polytechnic Institute, USA), and Elke A. Rundensteiner (Worcester Polytechnic Institute, USA)	595
Deep Learning Methods for the Prediction of Information Display Type Using Eye Tracking Sequences	. 601
DeepSplicer: An Improved Method of Splice Sites Prediction Using Deep Learning Victor Akpokiro (University of Colorado, USA), Oluwatosin Oluwadare (University of Colorado, USA), and Jugal Kalita (University of Colorado, USA)	606
Operationalizing Convolutional Neural Network Architectures for Prohibited Object Detection in X-Ray Imagery <i>Thomas W. Webb (Durham University, UK), Neelanjan Bhowmik (Durham University, UK), Yona Falinie A. Gaus (Durham University, UK), and</i> <i>Toby P. Breckon (Durham University, UK)</i>	. 610
Attention on Classification for Fire Segmentation Milad Niknejad (Institute for Systems and Robotics, Portugal) and Alexandre Bernardino (Institute for Systems and Robotics, Portugal)	. 616
Purrai: A Deep Neural Network Based Approach to Interpret Domestic Cat Language Weilin Sun (Saratoga High School, USA), Vincent Lu (Saratoga High School, USA), Aaron Truong (Los Altos High School, USA), Hermione Bossolina (Saratoga High School, USA), and Yuan Lu (AIZip, Inc., USA)	622

Object Detection and Retrieval

Survey of Visual-Semantic Embedding Methods for Zero-Shot Image Retrieval6 Kazuya Ueki (Meisei University, Japan)	528
Assisted Maintenance of Automatic Reclosers with Object Detection Through Mobile Devices 6	535
Francisco Marques Junior (Instituto Atlântico, Brazil), Rodrigo Melo	
(Instituto Atlântico, Brazil), Alano Pinto (Instituto Atlântico,	
Brazil), Arthur Bastos (Instituto Atlântico, Brazil), Samira Ribeiro	
(Instituto Atlântico, Brazil), Ana Gonçalves (Instituto Atlântico,	
Brazil), and Flávio Reis (Copel, Brazil)	

 Predicting YOLO Misdetection by Learning Grid Cell Consensus	643
SuperCaustics: Real-Time, Open-Source Simulation of Transparent Objects for Deep Learning Applications Mehdi Mousavi (Georgia State University, USA) and Rolando Estrada (Georgia State University, USA)	649
From Images in the wild to Video-Informed Image Classification Marc Böhlen (University at Buffalo, USA), Raunaq Jain (University at Buffalo, USA), Wawan Sujarwo (National Research and Innovation Agency, Indonesia), and Varun Chandola (University at Buffalo, USA)	656
Experience Feedback Using Representation Learning for Few-Shot Object Detection on Aerial Images Pierre Le Jeune (Université Sorbonne Paris Nord), Mustapha Lebbah (Université Sorbonne Paris Nord), Anissa Mokraoui (Université Sorbonne Paris Nord), and Hanene Azzag (Université Sorbonne Paris Nord)	662

Recurrent Networks

Efficient Deep Learning of Nonlinear Fiber-Optic Communications using a Convolutional Recurrent Neural Network	668
Game Character Facial Animation using Actor Video Corpus and Recurrent Neural Networks Sheldon Schiffer (Occidental College, USA)	674
Modeling and Predicting Online Learning Activities of Students: An HMM-LSTM Based Hybrid Solution Alexis Amezaga Hechavarria (Carleton University, Canada) and M. Omair Shafiq (Carleton University, Canada)	682
Continuous Multi-modal Emotion Prediction in Video Based on Recurrent Neural Network Variants with Attention <i>Joyal Raju (Durham University, UK), Yona Falinie A. Gaus (Durham</i> <i>University, UK), and Toby P. Breckon (Durham University, UK)</i>	688

PermeabilityNets: Comparing Neural Network Architectures on a Sequence-to-Instance Task in CFRP Manufacturing Simon Stieber (Institute for Software & Systems Engineering, University of Augsburg, Germany), Niklas Schröter (Institute for Software & Systems Engineering, University of Augsburg, Germany), Ewald Fauster (Processing of Composites Group, Montanuniversität Leoben, Austria), Alexander Schiendorfer (Institute for Software & Systems Engineering, University of Augsburg, Germany; Processing of Composites Group, Montanuniversitat Leoben, Austria), and Wolfgang Reif (Institute for Software and Systems Engineering, University of Augsburg, Germany)	694
Proxy Model Explanations for Time Series RNNs	698
Bidirectional Backpropagation for High-Capacity Blocking Networks Olaoluwa Adigun (University of Southern California) and Bart Kosko (University of Southern California)	704
Predicting Cognitive Load using Parameter-Optimized CNN from Spatial-Spectral Representation of EEG Recordings Felix Havugimana (University of Memphis, USA), Mohammed Bany Muhammad (University of Memphis, USA), Kazi Ashraf Moinudin (University of Memphis, USA), and Mohammed Yeasin (University of Memphis, USA)	710
Ensembles of Long Short-Term Memory Experts for Streaming Data with Sudden Concept Drift Sabine Apfeld (Fraunhofer FKIE, Germany), Alexander Charlish (Fraunhofer FKIE, Germany), and Gerd Ascheid (RWTH Aachen University, Germany)	716

Classification

Applications of Mobile Machine Learning for Detecting Bio-energy Crops Flowers Wenjun Zeng (Duke University, USA; University of Liverpool, UK) and Bakhtiar Amen (University of Liverpool, UK)	724
Influence of Training Data on the Invertability of Neural Networks for Handwritten Digit Recognition	. 730
Antonia Adler (ZITiS - Zentrale Stelle für Informationstechnik im Sicherheitsbereich, Germany; Universität der Bundeswehr München, Research Institute CODE, Germany), Michaela Geierhos (Universität der Bundeswehr München, Research Institute CODE, Munich, Germany), and Eleanor Hobley (ZITiS - Zentrale Stelle für Informationstechnik im Sicherheitsbereich, Munich, Germany)	
MLCHECK– Property-Driven Testing of Machine Learning Classifiers Arnab Sharma (University of Oldenburg, Germany), Caglar Demir (Paderborn University, Germany), Axel Cyrille Ngonga Ngomo (Paderborn University, Germany), and Heike Wehrheim (University of Oldenburg, Germany)	. 738
Instance-Based Label Smoothing for Better Calibrated Classification Networks Mohamed Maher Abdelrahman (University of Tartu, Estonia) and Meelis Kull (University of Tartu, Estonia)	. 746

ConfusionTree-Pattern: A Hierarchical Design for an Efficient and Performant Multi-class Pattern Michele Franco Adesso (University of Applied Science Stuttgart, Germany), Nicola Wolpert (University of Applied Science Stuttgart, Germany), and Elmar Schömer (Johannes Gutenberg University Mainz, Germany)	754
Detecting SSH and FTP Brute Force Attacks in Big Data John Hancock (Florida Atlantic University, USA), Taghi M. Khoshgoftaar (Florida Atlantic University, USA), and Joffrey L. Leevy (Florida Atlantic University, USA)	760
CurL-AutoML: Curriculum Learning-Based AutoML Lucas Nildaimon dos Santos Silva (Federal University of São Carlos), Lucas Cardoso Silva (Federal University of São Carlos), Fernando Rezende Zagatti (Federal University of São Carlos), Bruno Silva Sette (Federal University of São Carlos), Helena de Medeiros Caseli (Federal University of São Carlos), Daniel Lucrédio (Federal University of São Carlos), and Diego Furtado Silva (Federal University of São Carlos)	766
A Contrastive Learning Approach to Auroral Identification and Classification Jeremiah W. Johnson (University of New Hampshire, USA), Swathi Hari (University of New Hampshire, USA), Donald Hampton (University of Alaska-Fairbanks, USA), Hyunju K. Connor (University of Alaska-Fairbanks, USA), and Amy Keesee (University of New Hampshire, USA)	772
Homogeneous Transfer Active Learning for Time Series Classification Patrick Kinyua Gikunda (Université Paris 8, France) and Nicolas Jouandeau (Université Paris 8, France)	778
Cloud Failure Prediction with Hierarchical Temporal Memory: An Empirical Assessment Oliviero Riganelli (University of Milano - Bicocca, Italy), Paolo Saltarel (University of Milano - Bicocca, Italy), Alessandro Tundo (University of Milano - Bicocca, Italy), Marco Mobilio (University of Milano - Bicocca, Italy), and Leonardo Mariani (University of Milano - Bicocca, Italy)	785

Deep Adversarial Networks-II

Multiple Imputation via Generative Adversarial Network for High-Dimensional Blockwise Missing Value Problems Zongyu Dai (University of Pennsylvania, USA), Zhiqi Bu (University of Pennsylvania, USA), and Qi Long (University of Pennsylvania, USA)	791
Resiliency of SNN on Black-Box Adversarial Attacks Bijay Raj Paudel (Southern Illinois University Carbondale, USA), Aashish Itani (Southern Illinois University Carbondale, USA), and Spyros Tragoudas (Southern Illinois University Carbondale, USA)	799
Detecting Information Theft Attacks in the Bot-IoT Dataset Joffrey L. Leevy (Florida Atlantic University, USA), John Hancock (Florida Atlantic University, USA), Taghi M. Khoshgoftaar (Florida Atlantic University, USA), and Jared Peterson (Florida Atlantic University, USA)	807

Evolutionary Adversarial Attacks on Payment Systems	13
Perceptually Constrained Fast Adversarial Audio Attacks	19
GAN Based Approach for Drug Design	25
 Evaluation of GAN Architectures for Visualisation of HPV Viruses from Microscopic Images 8 Xiaohong W. Gao (Middlesex University, UK), Xuesong Wen (Middlesex University, UK), Dong Li (Middlesex University, UK), Weiping Liu (Nanjing University of Science and Technology, China), Jichun Xiong (Nanjing University of Science and Technology, China), Bin Xu (Nanjing University of Science and Technology, China), Juan Liu (Nanjing University of Science and Technology, China), Heng Zhang (Nanjing University of Science and Technology, China), and Xuefeng Liu (Nanjing University of Science and Technology, China), and Xuefeng Liu (Nanjing University of Science and Technology, China) 	29
Regularized Sequential Latent Variable Models with Adversarial Neural Networks	34
Impact of Reverberation Through Deep Neural Networks on Adversarial Perturbations	40

ML/DL Applications-III

Semantic Segmentation of Multi-channel Polycrystalline Structure Micrographs using	
Convolutional Neural Networks	847
Andreas Selmaier (Friedrich-Alexander-University of Erlangen-Nürnberg,	
Germany), Benjamin Lutz (Friedrich-Alexander-University of	
Erlangen-Nürnberg, Germany), Dominik Kisskalt	
(Friedrich-Alexander-University of Erlangen-Nürnberg, Germany), Simon	
Börnicke (Friedrich-Alexander-University of Erlangen-Nürnberg,	
Germany), Jens Fürst (Siemens Healthineer's Erlangen, Germany), and	
Jörg Franke Joerg (Friedrich-Alexander-University of	
Erlangen-Nürnberg, Germany)	
Sketch2Vis: Generating Data Visualizations from Hand-Drawn Sketches with Deep Learning	853
Zhongwei Teng (Vanderbilt University, USA), Quchen Fu (Vanderbilt	
University, USA), Jules White (Vanderbilt University, USA), and	

Douglas Schmidt (Vanderbilt University, USA)

SwiftLane: Towards Fast and Efficient Lane Detection Oshada Jayasinghe (University of Moratuwa, Sri Lanka), Damith Anhettigama (University of Moratuwa, Sri Lanka), Sahan Hemachandra (University of Moratuwa, Sri Lanka), Shenali Kariyawasam (University of Moratuwa, Sri Lanka), Ranga Rodrigo (University of Moratuwa, Sri Lanka), and Peshala Jayasekara (University of Moratuwa, Sri Lanka)	859
Contextual Road Lane and Symbol Generation for Autonomous Driving Ajay Soni (ZF TCI, India), Pratik Padamawar (ZF TCI, India), and Krishna Konda Reddy (ZF TCI, India)	865
Data-Driven State of Charge Estimation of Li-ion Batteries using Supervised Machine Learning Methods Yichun Li (University of Detroit Mercy, USA), Mina Maleki (University of Detroit Mercy, USA), Shadi Banitaan (University of Detroit Mercy, USA), and Mingzuoyang Chen (University of Detroit Mercy, USA)	873
Dynamic Adjustment of Concurrent Neural Networks Within Limited Power Thermal Constraints in Autonomous Driving Hee Jun Park (Qualcomm Technologies, Inc, USA) and Abhinav Goel (Purdue University, USA)	879
 Super Resolution with Sparse Gradient-Guided Attention for Suppressing Structural Distortion Geonhak Song (Sungkyunkwan University, Korea), Tien-Dung Nguyen (Hanoi University of Science and Technology, Vietnam), Junghyun Bum (Sungkyunkwan University, Korea), Hwijong Yi (National Institute of Crop Science, Korea), Chang-Hwan Son (Kunsan National University, Korea), and Hyunseung Choo (Sungkyunkwan University, Korea) 	885
Assessment of Neural Networks for Stream-Water-Temperature Prediction Stefanie Mohr (Technical University of Munich, Germany), Konstantina Drainas (Technical University of Munich, Germany), and Jürgen Geist (Technical University of Munich, Germany)	891
Voting Heterogeneous Ensemble for Code Smell Detection Hamoud Aljamaan (King Fahd University of Petroleum and Minerals, Saudi Arabia)	897

Graph Based Methods

Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph Convolutional Neural Networks <i>Aneesh Komanduri (University of Arkansas, USA) and Justin Zhan</i> <i>(University of Arkansas, USA)</i>	. 903
A Graph-Based Spatial Cross-Validation Approach for Assessing Models Learned with Selected Features to Understand Election Results <i>Tiago Pinho Da Silva (University of Sao Paulo, Brazil), Antonio R. S.</i> <i>Parmezan (University of São Paulo, Brazil), and Gustavo E. A. P. A.</i> <i>Batista (University of New South Wales, Australia)</i>	909
An Energy-Based Model for Neuro-Symbolic Reasoning on Knowledge Graphs Dominik Dold (Siemens AI Lab, Siemens AG Technology, Germany) and Josep Soler Garrido (Siemens AI Lab, Siemens AG Technology, Germany)	916

One Node at a Time: Node-Level Network Classification Saray Shai (Wesleyan University, USA), Isaac Jacobs (Wesleyan University, USA), and Peter Mucha (Dartmouth College, USA)	922
Homology Preserving Graph Compression Mehmet Emin Aktas (University of Central Oklahoma, USA), Thu Nguyen (University of Central Oklahoma, USA), and Esra Akbas (Oklahoma State University, USA)	930
Connection Management xAPP for O-RAN RIC: A Graph Neural Network and Reinforcement Learning Approach Oner Orhan (Intel Labs), Vasuki Narasimha Swamy (Intel Labs), Thomas Tetzlaff (Intel Labs), Marcel Nassar (Intel Labs), Hosein Nikopour (Intel Labs), and Shilpa Talwar (Intel Labs)	936
OntoConnect: Domain-Agnostic Ontology Alignment using Graph Embedding with Negative Sampling Jaydeep Chakraborty (SCAI, Arizona State University, USA), Hamada M. Zahera (Paderborn University, Germany), Mohamad Ahmed Sherif (Paderborn University, Germany), and Srividya K. Bansal (SCAI, Arizona State University, USA)	942
Graph Convolutional Networks for Categorizing Online Harassment on Twitter Mozhgan Saeidi (Dalhousie University, Canada), Evangelos Milios (Dalhousie University, Canada), and Norbert Zeh (Dalhousie University, Canada)	946
Visual Question Answering Based on Formal Logic Muralikrishnna G. Sethuraman (Georgia Institute of Technology, USA), Ali Payani (Cisco, USA), Faramarz Fekri (Georgia Institute of Technology, USA), and J. Clayton Kerce (Georgia Institute of Technology, USA)	952

Convolutional Neural Networks

Pruned Genetic-NAS on GPU Accelerator Platforms with Chaos-on-Edge Hyperparameters
Should You Go Deeper? Optimizing Convolutional Neural Network Architectures Without Training
Mats Leon Richter (Universität Osnabrück, Germany), Julius Schöning (Osnabrück University of Applied Science, Germany), Anna Wiedenroth (Universität Osnabrück, Germany), and Ulf Krumnack (Universität Osnabrück, Germany)
Elastic Distributed Training with Fast Convergence and Efficient Resource Utilization
Dynamically Adapting Floating-Point Precision to Accelerate Deep Neural Network Training 980 John Osorio Rios (Barcelona Supercomputing Center (BSC), Universitat Politècnica de Catalunya (UPC), Spain), Adrià Armejach (Barcelona Supercomputing Center (BSC), Universidad Politecnica de Catalunya (UPC), Spain), Eric Petit (Intel, Oregon, USA), Greg Henry (Intel, Oregon, USA), and Marc Casas (Barcelona Supercomputing Center (BSC), Universitat Politècnica de Catalunya (UPC), Spain)

Improved CNN Classification Accuracy with the Addition of Shallow Cascading CNNs
 Boosting the Intelligibility of Waveform Speech Enhancement Networks Through Self-Supervised Representations
 CONetV2: Efficient Auto-Channel Size Optimization for CNNs
Trajectory Growth Lower Bounds for Random Sparse Deep ReLU Networks
Local Geometry Preserving Deep Networks for Featurizing High Dimensional Datasets

Applications of Deep & Machine Learning-III

Towards Sequential Multivariate Fault Prediction for Vehicular Predictive Maintenance
Curriculum Learning to Handle Extreme Class Imbalance for Acoustic Modeling of Forest Elephant Calls
Jonathan Gomes-Selman (Stanford University, USA), Nikita Demir
(Stanford University, USA), Peter Wrege (Cornell University, USA), and Andreas Paepcke (Stanford University, USA)
Pneumonia Detection with Game-Theoretic Rough Sets
Deployment of Embedded Edge-AI for Wildlife Monitoring in Remote Regions

Is Your Time Well Spent Online?: Focusing on Quality Experiences Through a User-Centered Recommendation Algorithm and Simulation Model	1043
Rania Islambouli (École Polytechnique Fédérale de Lausanne, Switzerland), Sandy Ingram (School of Engineering and Architecture of Fribourg, Switzerland), and Denis Gillet (École Polytechnique Fédérale de Lausanne, Switzerland)	
Theory for Deep Learning Regression Ensembles with Application to Raman Spectroscopy Analysis	1049
Wenjing Li (Worcester Polytechnic Institute, USA), Randy C. Paffenroth (Worcester Polytechnic Institute, USA), Michael T. Timko (Worcester Polytechnic Institute, USA), Matthew P. Rando (Worcester Polytechnic Institute, USA), Avery B. Brown (Worcester Polytechnic Institute, USA), and N. Aaron Deskins (Worcester Polytechnic Institute, USA)	
Optimizing Multi-stage Hydraulic Fracturing Treatments for Economical Production in Permian Basin using Machine Learning Yanfang Wang (Louisiana State University, USA), Jianhua Chen (Louisiana State University, USA), Seung Kam (Louisiana State University, USA), and Anqi Bao (Texas A&M University, USA)	1057
Counter-Factual Analysis of On-Line Math Tutoring Impact on Low-Income High School Students	1063
Aloqeely (King Saud University, Saudi Arabia)	

Encoders/ Representation Learning

Trade-Offs in Metric Learning for Bearing Fault Diagnosis
In Search of Probeable Generalization Measures
LIDSNet: A Lightweight on-Device Intent Detection Model using Deep Siamese Network
Argue to Learn: Accelerated Argumentation-Based Learning

Special Session on Federated Learning and Meta Learning

GraFeHTy: Graph Neural Network using Federated Learning for Human Activity Recognition 1124 Abhishek Sarkar (Ericsson), Tanmay Sen (Ericsson), and Ashis Kumar Roy (Ericsson)
 Federated Fuzzy Learning with Imbalanced Data
OptABC: an Optimal Hyperparameter Tuning Approach for Machine Learning Algorithms 1138 Leila Zahedi (Florida International University, USA; Sustainability, Optimization, and Learning for InterDependent networks (solid) laboratory, USA), Farid Ghareh Mohammadi (University of Georgia, USA), and M. Hadi Amini (Florida International University, USA; Sustainability, Optimization, and Learning for InterDependent networks (solid) laboratory, USA)
Federated Deep Learning for Heterogeneous Edge Computing

 Incremental Learning Vector Auto Regression for Forecasting with Edge Devices
Pvt. Ltd., India)
Data Driven Football Scouting Assistance with Simulated Player Performance Extrapolation 1160 Shantanu Ghar (SIES Graduate School of Technology, India), Sayali Patil (SIES Graduate School of Technology, India), and Venkhatesh Arunachalam (SIES Graduate School of Technology, India)
Active Learning to Support In-Situ Process Monitoring in Additive Manufacturing
Federated Fine-Tuning Performance on Edge Devices

Machine Learning Methods

Robust Thresholding Strategies for Highly Imbalanced and Noisy Data
 Harnessing Expressive Capacity of Machine Learning Modeling to Represent Complex Coupling of Earth's Auroral Space Weather Regimes
 MetaPrep: Data Preparation Pipelines Recommendation via meta-Learning
Active Learning of Markov Decision Processes using Baum-Welch Algorithm

Maximizing University Enrollment using Institutional-Based Aid Scholarship 1	1209
Ahmad Slim (Lebanese American University, Lebanon; Institute of Design	
and Innovation, University of New Mexico, USA), Don Hush (Institute of	
Design and Innovation, University of New Mexico, USA), Tushar Ojha	
(Institute of Design and Innovation, University of New Mexico, USA),	
Georges El-Howayek (Valparaiso University, USA), Chaouki Abdallah	
(Georgia Institute of Technology, USA), and Terry Babbitt (Office of	
the President, University of New Mexico, USA)	
Active Learning and Machine Teaching for Online Learning: A Study of Attention and	
Labelling Cost	1215
Agnes Tegen (Malmö University, Sweden), Paul Davidsson (Malmö	
University, Sweden), and Jan A. Persson (Malmö University, Sweden)	

Attention Networks

 Semi-Supervised Graph Instance Transformer for Mental Health Inference
Leveraging Transformers for StarCraft Macromanagement Prediction
 Transformer Based Bengali Chatbot using General Knowledge Dataset
Medical Code Prediction from Discharge Summary: Document to Sequence BERT using Sequence Attention
Tak-Sung Heo (NHN Diquest, Seoul), Yongmin Yoo (NHN Diquest, Seoul), YeongJoon Park (NHN Diquest, Seoul), ByeongCheol Jo (NHN Diquest, Seoul), Kyounguk Lee (NHN Diquest, Seoul), and Kyungsun Kim (NHN Diquest, Seoul)
A Transformer-Based Approach for Translating Natural Language to Bash Commands
Towards Intelligent Reading Through Multimodal and Contextualized Word LookUp 1249 Swetha Govindu (San Francisco State University, USA), Raviteja Vidya Guttula (San Francisco State University, USA), Swati Kohli (San Francisco State University, USA), Poonam Patil (San Francisco State University, USA), Anagha Kulkarni (San Francisco State University, USA), and Ilmi Yoon (San Francisco State University, USA)

Sentiment Analysis of StockTwits using Transformer Models	1253
Aysun Bozanta (Ryerson University, Canada), Sabrina Angco (Ryerson	
University, Canada), Mucahit Cevik (Ryerson University, Canada), and	
Ayse Basar (Ryerson University, Canada)	

Anomaly Detection and Clustering II

Video Anomaly Detection using Dual Discriminator Based Generative Adversarial Network 1259 Jiaqi Xu (Beijing Jiaotong University, China), Zhenjiang Miao (Beijing Jiaotong University, China), Wanru Xu (Beijing Jiaotong University, China), Jiaji Wang (Beijing Jiaotong University, China), Qiang Zhang (Beijing Jiaotong University, China), and Shaoyue Song (Beijing Jiaotong University, China)
A Validation Framework for ARP Similarity Measure
How Dense Autoencoders can Still Achieve the State-of-the-Art in Time-Series Anomaly Detection
Louis Jensen (Boston University), Ben Teitelbaum (Clostra), Peter Chin (Boston University), and Jayme Fosa (Clostra)
Conversation Clustering Adaptation for Intent Recognition
Analyzing and Improving the Robustness of Tabular Classifiers using Counterfactual Explanations
Peyman Rasouli (University of Oslo, Norway) and Ingrid Chieh Yu (University of Oslo, Norway)
An Unsupervised Learning Methodology for Increasing Human Productivity via VR Training 1294 Sergio Viademonte (Vale Institute of Technology), Bruno D. Gomes (Federal University of Para), Ana C. Q. Siravenha (Federal University of Para), Walisson C. Gomes (Vale Institute of Technology), Caio Rodrigues (Vale Institute of Technology), and Renan A. Tourinho (Vale S/A)

Special Session: Machine Learning in Health-I

An HMM-Ensemble Approach to Predict Severity Progression of ICU Treatment for Hospitalized COVID-19 Patients	1299
Federica Mandreoli (University of Modena and Reggio Emilia, Italy), Federico Motta (University of Modena and Reggio Emilia, Italy), and	
Paolo Missier (Newcastle University, UK)	
Conformal Wearable for Quantification of Dorsiflexion for a Hemiplegic Ankle Pair with	
Distinction by Machine Learning	1307
Robert LeMoyne (Northern Arizona University, USA) and Timothy	
Mastroianni (Cognition Engineering)	

EMU: Early Mental Health Uncovering Framework and Dataset
COVID-CBR: A Deep Learning Architecture Featuring Case-Based Reasoning for Classification of COVID-19 from Chest X-Ray Images
Classifying Challenging Behaviors in Autism Spectrum Disorder with Word Embeddings 1325 Abigail Atchison (Chapman University, USA), Gabriela Pinto (Chapman University, USA), Ali Woodward (Chapman University, USA), Elizabeth Stevens (Chapman University, USA), Dennis Dixon (Center for Autism and Related Disorders, USA), and Erik Linstead (Chapman University, USA)
Effects of COVID-19 on Individuals in Opioid Addiction Recovery
Automated Machine Learning Strategies to Damage Identification of Neurofibromatosis Mutations 1341 Alvaro D. Orjuela-Cañón (Universidad del Rosario, Colombia), Juan 1341 Carlos Figueroa-García (Universidad Distrital Francisco José de 1341 Caldas, Colombia), and Román Neruda (Institute of Computer Science, 1341 Charles University, Czech Republic) 1341

Special Session: Machine Learning for Predictive Models in Engineering Applications-I

Peter Domanski (University of Stuttgart, Germany), Dirk Pflüger (University of Stuttgart, Germany), Raphaël Latty (Advantest Europe GmbH), and Jochen Rivoir (Advantest Europe GmbH)

Verifying the Applicability of Synthetic Image Generation for Object Detection in Industrial Quality Inspection
Majid Shirazi (BMW Group, Germany), Markus Schmitz (BMW Group, Germany), Simon Janssen (BMW Group, Germany), Anabelle Thies (Technical University of Munich, Germany), Georgij Safronov (Technical University of Munich, Germany), Amr Rizk (University of Duisburg-Essen, Germany), Peter Mayr (Technical University of Munich, Germany), and Philipp Engelhardt (BMW Group, Germany)
 Shapelets-Based Data Augmentation for Time Series Classification
Machine Learning Model Update Strategies for Hard Disk Drive Failure Prediction
Deep Neural Networks for Detecting Asteroids in the ATLAS Data Pipeline

Special Session: Deep Learning-I

Towards Building a Robust Large-Scale Bangla Text Recognition Solution Using a Unique Multiple-Domain Character-Based Document Recognition Approach
Temporal Bottleneck Attention for Video Recognition
Deeper Neural Networks with Non-Vanishing Logistic Hidden Units: NoVa vs. ReLU Neurons 1407 Olaoluwa Adigun (University of Southern California, USA) and Bart Kosko (University of Southern California, USA)
Using Generative Adversarial Networks and Non-Roadside Video Data to Generate Pedestrian Crossing Scenarios
Alternate Model Growth and Pruning for Efficient Training of Recommendation Systems

Learn to Trace Odors: Autonomous Odor Source Localization via Deep Learning Methods 14	429
Lingxiao Wang (Embry-Riddle Aeronautical University), Shuo Pang	
(Embry-Riddle Aeronautical University), and Jinlong Li (Marine Design	
and Research Institude of China, China)	
PrunedCaps: A Case for Primary Capsules Discrimination	437
Ramin Sharifi (University of Victoria, Canada), Pouya Shiri	
(University of Victoria, Canada), and Amirali Baniasadi (University of	

Special Session: Machine Learning in Health-II

A Machine Learning Approach for Predicting Deterioration in Alzheimer's Disease
Towards Understanding the Psychological Effects of the COVID-19 Pandemic on the Indian Population 1449 Deepanshu Pandey (ZS Associates India Pvt. Ltd., India), Pranav 1449 Khurana (Netaji Subhas University of Technology, India), and Ashwin Misra (Carnegie Mellon University, USA)
Data Augmentation and CNN Classification for Automatic COVID-19 Diagnosis from CT-Scan Images on Small Dataset
Decoder Transformer for Temporally-Embedded Health Outcome Predictions
Text Mining Approach to Predict Non-adherence
 Explainable Zero-Shot Modelling of Clinical Depression Symptoms from Text
A Deep Learning-Based Approach for Real-Time Facemask Detection

Learning from Limited Data for Speech-Based Traumatic Brain Injury (TBI) Detection 1482 Apiwat Ditthapron (Worcester Polytechnic Institute), Emmanuel Agu (Worcester Polytechnic Institute), and Adam Lammert (Worcester Polytechnic Institute)
 Automated Hand Osteoarthritis Classification using Convolutional Neural Networks
 BP-Net: Efficient Deep Learning for Continuous Arterial Blood Pressure Estimation using Photoplethysmogram
End-to-End Optimized Arrhythmia Detection Pipeline using Machine Learning for Ultra-Edge Devices
Learning Medical Risk Scores for Pediatric Appendicitis

Special Session: Machine Learning for Predictive Models in Engineering Applications-II

Condition Monitoring for Power Converters via Deep One-Class Classification Nikola Markovic (Ruhr University Bochum), Daniel Vahle (Ruhr University Bochum), Volker Staudt (Ruhr University Bochum), and Dorothea Kolossa (Ruhr University Bochum)	1513
Understanding Traffic Cruising Causation via Parking Data Enhancement	1521
Mirza Jasarevic (Blekinge Institute of Technology, Sweden), Veselka	
Boeva (Blekinge Institute of Technology, Sweden), Fredrik Sjölin	
(Municipality of Karlskrona, Sweden), and Per-Olav Gramstad	
(Municipality of Karlskrona, Sweden)	

Auto-Encoder LSTM for Li-ion SOH Prediction: A Comparative Study on Various Benchmark Datasets
Deep Learning for Range Localization via Over-Water Electromagnetic Signals
Catch Weight Prediction for Multi-Species Fishing using Artificial Neural Networks
Size Does Matter: Overcoming Limitations During Training when using a Feature Pyramid Network

Special Session on Machine Learning for Natural Language Processing

Aspect Oriented Suggestion Extraction from Online Reviews
A Proposal to Identify Stakeholders from News for the Institutional Relationship Management Activities of an Institution Based on Named Entity Recognition using BERT
 SP-GPT2: Semantics Improvement in Vietnamese Poetry Generation
Detecting Offensive Content on Twitter During Proud Boys Riots

AuTGeLy: Automatic Title Generator Based on Song Lyrics Extractions
Hashtags: an Essential Aspect of Topic Modeling of City Events Through Social Media
CVSS-BERT: Explainable Natural Language Processing to Determine the Severity of a Computer Security Vulnerability from Its Description
An Augmented Image Captioning Model: Incorporating Hierarchical Image Information
Improving Next-Application Prediction with Deep Personalized-Attention Neural Network 1615 Jun Zhu (CentraleSupélc, Université Paris-Saclay, France), Gautier Viaud (CentraleSupélc, Université Paris-Saclay, France), and Céline Hudelot (CentraleSupélc, Université Paris-Saclay, France)
A Study of the Plausibility of Attention Between RNN Encoders in Natural Language Inference
 Automating Questions and Answers of Good and Services Tax System using Clustering and Embeddings of Queries

Special Session: Machine Learning Surrogate Models in Science and Engineering

A Physics-Informed Graph Attention-Based Approach for Power Flow Analysis	34
Data-Driven Support Recovery for Sparse Signals with Non-Stationary Modulation	41
Practical Active Learning with Model Selection for Small Data	47

Surrogate Ground Truth Generation to Enhance Binary Fairness Evaluation in Uplift Modeling 1654 Filip Michalský (Fidelity Investments) and Serdar Kadıoğlu (Fidelity Investments)
Voxel-Based Deep Learning for Image Super-Resolution of Areal Density Maps of Carbon-Nanotube Sheets
Yingnan Liu (Worcester Polytechnic Institute) and Randy Clinton Paffenroth (Worcester Polytechnic Institute)
Learning Free-Surface Flow with Physics-Informed Neural Networks
An Empirical Evaluation of the t-SNE Algorithm for Data Visualization in Structural Engineering

Combined Special Session on ML for Graphs

Learning Mathematical Relations using Deep Tree Models
Influential Nodes Detection in Complex Networks via Diffusion Fréchet Function
BuiltNet: Graph Based Spatio-Temporal Indoor Thermal Variation Detection
Improve Learner-Based Recommender System with Learner's Mood in Online Learning Platform 1704
Qing Tang (Sorbonne Universites UTC, France), Marie-Helene Abel (Sorbonne Universités UTC, France), and Elsa Negre (Paris-Dauphine University, PSL Research University, France)
 Mood Detection Ontology Integration with Teacher Context

Monitoring Karting Pilot's Moodflow: A First Experience 17	716
Carolina Frangeto (PUC de Campinas, Brazil), Marcius Carvalho (PUC de	
Campinas, Brazil), Frederic Andres (National Institute of Informatics,	
Japan), Bernard Blancan (CIRET, France), and Lia Toledo Moreira Mota	
(PUC de Campinas, Brazil)	

Special Session: Deep Learning-II

Evaluating Sentiments in Social Media Comments on Tax Transformation in India using Deep	
Learning	1779
Pankaj Dikshit (School of IT, Indian Institute of Technology, Delhi)	
and B Chandra (School of IT, Indian Institute of Technology, Delhi)	
Threshold-free Anomaly Detection for Streaming Time Series through Deep Learning Jing Zhang (JDTech, Beijing, China), Chao Wang (JDTech, Beijing, China), Zezhou Li (IDTech, Beijing, China), and Xianbo Zhang (IDTech,	1783
Beijing, China)	

Author Index