2021 IEEE International Conference on Data Mining (ICDM 2021)

Virtual Conference 7-10 December 2021

Pages 1-786

IEEE Catalog Number: CFP21278-POD **ISBN:**

978-1-6654-2399-1

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP21278-POD 978-1-6654-2399-1 978-1-6654-2398-4 1550-4786

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE International Conference on Data Mining (ICDM) ICDM 2021

Table of Contents

Message from the ICDM 2021 General Chairs	xxviii
Message from the ICDM 2021 Program Chairs	xxx
Organizing Committee	xxxii
Area Chairs and Program Committee	xxxiv
External Reviewers	xliv
Keynotes	xlviii

Regular Papers

Gated Information Bottleneck for Generalization in Sequential Environments
 Partial Differential Equation Driven Dynamic Graph Networks for Predicting Stream Water Temperature
 A Linear Primal-Dual Multi-instance SVM for Big Data Classifications
Spatially and Robustly Hybrid Mixture Regression Model for Inference of Spatial Dependence31 Wennan Chang (Purdue University), Pengtao Dang (Purdue University), Changlin Wan (Purdue University), Xiaoyu Lu (Indiana University, USA), Yue Fang (Department of Biostatistics, Indiana University), Tong Zhao (Amazon), Yong Zang (Indiana University, USA), Bo Li (Peking University, China), Chi Zhang (Purdue University), and Sha Cao (Indiana University, USA)

Differentially Private String Sanitization for Frequency-Based Mining Tasks
Learning Transferable User Representations with Sequential Behaviors via Contrastive Pre-Training
 Highly Scalable and Provably Accurate Classification in Poincaré Balls
Topic-Noise Models: Modeling Topic and Noise Distributions in Social Media Post Collections 71 Rob Churchill (Georgetown University, USA) and Lisa Singh (Georgetown 71 University, USA)
TRIO: Task-Agnostic Dataset Representation Optimized for Automatic Algorithm Selection
Hypergraph Ego-Networks and Their Temporal Evolution
MetaGB: A Gradient Boosting Framework for Efficient Task Adaptive Meta Learning 101 Manqing Dong (University of New South Wales), Lina Yao (University of New South Wales), Xianzhi Wang (University of Technology Sydney), Xiwei Xu (Data61, CSIRO), and Liming Zhu (Data61, CSIRO)
ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network
 Dictionary Pair-Based Data-Free Fast Deep Neural Network Compression

GNES: Learning to Explain Graph Neural Networks Yuyang Gao (Emory University, USA), Tong Sun (George Mason University, USA), Rishab Bhatt (Emory University, USA), Dazhou Yu (Emory University, USA), Sungsoo Hong (George Mason University, USA), and Liang Zhao (Emory University, USA)	131
Graph Transfer Learning Andrey Gritsenko (Northeastern University, USA), Yuan Guo (Northeastern University, USA), Kimia Shayestehfard (Northeastern University, USA), Armin Moharrer (Northeastern University, USA), Jennifer Dy (Northeastern University, USA), and Stratis Ioannidis (Northeastern University, USA)	. 141
Finding Age Path of Self-Paced Learning Bin Gu (Mohamed bin Zayed University of Artificial Intelligence, UAE), Zhou Zhai (Nanjing University of Information Science & Technology, China), Xiang Li (University of Western Ontario, Canada), and Heng Huang (University of Pittsburgh, USA)	151
Continual Learning for Multivariate Time Series Tasks with Variable Input Dimensions Vibhor Gupta (TCS Research, India), Jyoti Narwariya (TCS Research, India), Pankaj Malhotra (TCS Research, India), Lovekesh Vig (TCS Research, India), and Gautam Shroff (TCS Research, India)	161
LAGA: Lagged AllReduce with Gradient Accumulation for Minimal Idle Time Ido Hakimi (Technion - Israel Institute of Technology, Israel), Rotem Zamir Aviv (Technion - Israel Institute of Technology, Israel), Kfir Y. Levy (Technion - Israel Institute of Technology, Israel), and Assaf Schuster (Technion - Israel Institute of Technology, Israel)	171
Online Learning in Variable Feature Spaces with Mixed Data Yi He (Old Dominion University), Jiaxian Dong (Guangzhou University), Bo-Jian Hou (Cornell University), Yu Wang (Guangzhou University), and Fei Wang (Cornell University)	. 181
Conversion Prediction with Delayed Feedback: A Multi-task Learning Approach Yilin Hou (Alibaba Group, China), Guangming Zhao (Alibaba Group, China), Chuanren Liu (The University of Tennessee, USA), Zhonglin Zu (Alibaba Group, China), and XIaoqiang Zhu (Alibaba Group, China)	191
Flexible, Robust, Scalable Semi-Supervised Learning via Reliability Propagation Chen Huang (University of Electronic Science and Technology of China; SiChuan University, China), Liangxu Pan (University of Electronic Science and Technology of China), Qinli Yang (University of Electronic Science and Technology of China), Hongliang Wang (University of Electronic Science and Technology of China; Kth Royal Institute of Technology), and Junming Shao (University of Electronic Science and Technology of China)	. 200
Group-Level Cognitive Diagnosis: A Multi-task Learning Perspective Jie Huang (University of Science and Technology of China), Qi Liu (University of Science and Technology of China), Fei Wang (University of Science and Technology of China), Zhenya Huang (University of Science and Technology of China), Songtao Fang (University of Science and Technology of China), Runze Wu (NetEase Fuxi AI Lab, China), Enhong Chen (University of Science and Technology of China), Yu Su (iFLYTEK Research, China), and Shijin Wang (IFLYTEK, China)	. 210

 STAN: Adversarial Network for Cross-Domain Question Difficulty Prediction	220
Climate Modeling with Neural Diffusion Equations Jeehyun Hwang (Yonsei University, South Korea), Jeongwhan Choi (Yonsei University, South Korea), Hwangyong Choi (Yonsei University, South Korea), Kookjin Lee (Arizona State University, USA), Dongeun Lee (Texas A&M University - Commerce, USA), and Noseong Park (Yonsei University, South Korea)	. 230
Risk-Aware Temporal Cascade Reconstruction to Detect Asymptomatic Cases Hankyu Jang (The University of Iowa, USA), Shreyas Pai (The University of Iowa, USA), Bijaya Adhikari (The University of Iowa, USA), and Sriram V. Pemmaraju (The University of Iowa, USA)	240
Attentive Neural Controlled Differential Equations for Time-Series Classification and Forecasting Sheo Yon Jhin (Yonsei University, South Korea), Heejoo Shin (Yonsei University, South Korea), Seoyoung Hong (Yonsei University, South Korea), Minju Jo (Yonsei University, South Korea), Solhee Park (Yonsei University, South Korea), Noseong Park (Yonsei University, South Korea), Seungbeom Lee (Socar Co. Ltd., South Korea), Hwiyoung Maeng (Socar Co. Ltd., South Korea), and Seungmin Jeon (Socar Co. Ltd., South Korea)	. 250
 Hypergraph Convolutional Network for Group Recommendation Renqi Jia (University of Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China), Xiaofei Zhou (University of Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China), Linhua Dong (University of Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China), Linhua Dong (University of Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China; Institute of Information Engineering, Chinese Academy of Sciences, China), and Shirui Pan (Monash University, Australia) 	.260
Physics-Guided Machine Learning from Simulation Data: An Application in Modeling Lake and River Systems	270
Crowdsourcing with Self-Paced Workers Xiangping Kang (Shandong University, China), Guoxian Yu (Shandong University, China), Carlotta Domeniconi (George Mason University, USA), Jun Wang (Shandong University, China), Wei Guo (Shandong University, China), Yazhou Ren (University of Elec. Sci. and Tech. of China, China), and Lizhen Cui (Shandong University, China)	. 280

MASCOT: A Quantization Framework for Efficient Matrix Factorization in Recommender Systems..... 290

Yunyong Ko (Hanyang University, Republic of Korea), Jae-Seo Yu (Hanyang University, Republic of Korea), Hong-Kyun Bae (Hanyang University, Republic of Korea), Yongjun Park (Hanyang University, Republic of Korea), Dongwon Lee (The Pennsylvania State University, University Park, USA), and Sang-Wook Kim (Hanyang University, Republic of Korea)
Anomaly Detection with Prototype-Guided Discriminative Latent Embeddings
THyMe+: Temporal Hypergraph Motifs and Fast Algorithms for Exact Counting
 BaT: Beat-Aligned Transformer for Electrocardiogram Classification
Mcore: Multi-agent Collaborative Learning for Knowledge-Graph-Enhanced Recommendation 330 Xujia Li (The Hong Kong University of Science and Technology), Yanyan Shen (Shanghai Jiao Tong University), and Lei Chen (The Hong Kong University of Science and Technology)
 Towards Interpretability and Personalization: A Predictive Framework for Clinical Time-Series Analysis
Preference-Aware Group Task Assignment in Spatial Crowdsourcing: A Mutual Information-Based Approach

 Disentangled Deep Multivariate Hawkes Process for Learning Event Sequences	. 360
SSDNet: State Space Decomposition Neural Network for Time Series Forecasting Yang Lin (The University of Sydney, Australia), Irena Koprinska (The University of Sydney, Australia), and Mashud Rana (CSIRO, Australia)	. 370
Deep Generation of Heterogeneous Networks Chen Ling (Emory University, USA), Carl Yang (Emory University, USA), and Liang Zhao (Emory University, USA)	379
 Technological Knowledge Flow Forecasting Through A Hierarchical Interactive Graph Neural Network Huijie Liu (University of Science and Technology of China, China), Han Wu (University of Science and Technology of China, China), Le Zhang (University of Science and Technology of China, China), Runlong Yu (University of Science and Technology of China, China), Ye Liu (University of Science and Technology of China, China), Ye Liu (University of Science and Technology of China, China), Chunli Liu (Hefei University of Technology, China), Qi Liu (University of Science and Technology of China, China), and Enhong Chen (University of Science and Technology of China, China) 	389
Efficient Reinforced Feature Selection via Early Stopping Traverse Strategy Kunpeng Liu (University of Central Florida, USA), Pengfei Wang (DAMO Academy, Alibaba Group, China), Dongjie Wang (University of Central Florida, USA), Wan Du (University of California Merced), Dapeng Wu (University of Florida, USA), and Yanjie Fu (University of Central Florida, USA)	399
Multi-objective Explanations of GNN Predictions Yifei Liu (BUPT, China), Chao Chen (Lehigh University, USA), Yazheng Liu (BUPT, China), Xi Zhang (BUPT, China), and Sihong Xie (Lehigh University, USA)	. 409
FGC-Stream: A Novel Joint Miner for Frequent Generators and Closed Itemsets in Data Streams	419
Multi-way Time Series Join on Multi-length Patterns Md Parvez Mollah (University of New Mexico, USA), Vinicius M. A. Souza (Pontifícia Universidade Católica do Paraná, Brazil), and Abdullah Mueen (University of New Mexico, USA)	429
Outlier-Robust Multi-view Subspace Clustering with Prior Constraints Mehrnaz Najafi (LinkedIn, USA), Lifang He (Lehigh University, USA), and Philip S. Yu (University of Illinois at Chicago, USA)	439

Label Dependent Attention Model for Disease Risk Prediction using Multimodal Electronic Health Records 449
Shuai Niu (Hong Kong Baptist University, China), Qing Yin (Hong Kong Baptist University, China), Yunya Song (Hong Kong Baptist University, China), Yike Guo (Hong Kong Baptist University, China), and Xian Yang (Hong Kong Baptist University, China)
Cutting to the Chase with Warm-Start Contextual Bandits
Towards Generating Real-World Time Series Data
GraphANGEL: Adaptive and Structure-Aware Sampling on Graph Neural Networks
 Sequential Diagnosis Prediction with Transformer and Ontological Representation
Cardiac Complication Risk Profiling for Cancer Survivors via Multi-view Multi-task Learning 499
Thai-Hoang Pham (The Ohio State University, USA), Changchang Yin (The Ohio State University, USA), Laxmi Mehta (The Ohio State University, USA), Xueru Zhang (The Ohio State University, USA), and Ping Zhang (The Ohio State University, USA)
Powered Hawkes-Dirichlet Process: Challenging Textual Clustering using a Flexible Temporal Prior
France)
Memory Augmented Multi-instance Contrastive Predictive Coding for Sequential Recommendation
Robust Low-Rank Deep Feature Recovery in CNNs: Toward Low Information Loss and Fast Convergence

Truth Discovery in Sequence Labels from Crowds	539
Better Prevent than React: Deep Stratified Learning to Predict Hate Intensity of Twitter Reply Chains	549
 Fast Attributed Graph Embedding via Density of States	559
PARWiS: Winner Determination from Active Pairwise Comparisons Under a Shoestring Budget5 Dev Yashpal Sheth (Indian Institute of Technology Madras, India) and Arun Rajkumar (Indian Institute of Technology Madras, India)	569
 Attention-Based Feature Interaction for Efficient Online Knowledge Distillation	579
Ultra Fast Warping Window Optimization for Dynamic Time Warping	589
A Robust Algorithm to Unifying Offline Causal Inference and Online Multi-Armed Bandit Learning	599
Fast Computation of Distance-Generalized Cores using Sampling	509
Isolation Kernel Density Estimation	519
DCF: An Efficient and Robust Density-Based Clustering Method	529
CASPITA: Mining Statistically Significant Paths in Time Series Data from an Unknown Network	539
Precise Bayes Classifier: Summary of Results Amin Vahedian (University of Wisconsin-Whitewater, USA) and Xun Zhou (The University of Iowa, USA)	549

USTEP: Unfixed Search Tree for Efficient Log Parsing
Deep Reinforced Attention Regression for Partial Sketch Based Image Retrieval
Deep Human-Guided Conditional Variational Generative Modeling for Automated Urban Planning 679
Dongjie Wang (University of Central Florida, USA), Kunpeng Liu (University of Central Florida, USA), Pauline Johnson (University of Central Florida, USA), Leilei Sun (Beihang University, China), Bowen Du (University of Central Florida, USA), and Yanjie Fu (University of Central Florida, USA)
Combining Ranking and Point-Wise Losses for Training Deep Survival Analysis Models
 Global Convolutional Neural Processes
Nonlinear Causal Structure Learning for Mixed Data
 Learning to Reweight Samples with Offline Loss Sequence
PRGAN: Personalized Recommendation with Conditional Generative Adversarial Networks 729 Jing Wen (Sun Yat-sen University, China; Guangdong Province Key Laboratory of Computational Science, China; Ministry of Education, China), Bi-Yi Chen (Sun Yat-sen University, China; Guangdong Province Key Laboratory of Computational Science, China; Ministry of Education, China), Chang-Dong Wang (Sun Yat-sen University, China; Guangdong Province Key Laboratory of Computational Science, China; Ministry of Education, China), and Zhihong Tian (Guangzhou University, China)
A Regularized Wasserstein Framework for Graph Kernels

 Impression Allocation and Policy Search in Display Advertising
 Expert Knowledge-Guided Length-Variant Hierarchical Label Generation for Proposal Classification
A Statistically-Guided Deep Network Transformation and Moderation Framework for Data with Spatial Heterogeneity
 Predictive Modeling of Clinical Events with Mutual Enhancement Between Longitudinal Patient Records and Medical Knowledge Graph
 Hyper Meta-Path Contrastive Learning for Multi-behavior Recommendation
Graph-Based Adversarial Online Kernel Learning with Adaptive Embedding
Structure-Aware Stabilization of Adversarial Robustness with Massive Contrastive Adversaries 807 Shuo Yang (The University of Sydney, Australia), Zeyu Feng (The 807 University of Sydney, Australia), Pei Du (AntGroup, China), Bo Du 807 (Wuhan University, China), and Chang Xu (The University of Sydney, Australia) 807
Space Meets Time: Local Spacetime Neural Network for Traffic Flow Forecasting

Accurate Graph-Based PU Learning Without Class Prior Jaemin Yoo (Seoul National University, South Korea), Junghun Kim (Seoul National University, South Korea), Hoyoung Yoon (Seoul National University, South Korea), Geonsoo Kim (NCSOFT, South Korea), Changwon Jang (NCSOFT, South Korea), and U Kang (Seoul National University, South Korea)	827
AS-GCN: Adaptive Semantic Architecture of Graph Convolutional Networks for Text-Rich Networks	837
Physics Interpretable Shallow-Deep Neural Networks for Physical System Identification with Unobservability <i>Jingyi Yuan (Arizona State University, USA) and Yang Weng (Arizona State University, USA)</i>	847
SCEHR: Supervised Contrastive Learning for Clinical Risk Prediction using Electronic Health Records Chengxi Zang (Population Health Sciences, Weill Cornell Medicine, USA) and Fei Wang (Population Health Sciences, Weill Cornell Medicine, USA)	857
FRAUDRE: Fraud Detection Dual-Resistant to Graph Inconsistency and Imbalance Ge Zhang (Macquarie University, Australia), Jia Wu (Macquarie University, Australia), Jian Yang (Macquarie University, Australia), Amin Beheshti (Macquarie University, Australia), Shan Xue (Macquarie University, Australia), Chuan Zhou (Chinese Academy of Sciences, China), and Quan Z. Sheng (Macquarie University, Australia)	867
Robustifying DARTS by Eliminating Information Bypass Leakage via Explicit Sparse Regularization <i>Jiuling Zhang (University of Chinese Academy of Sciences, China) and</i> <i>Zhiming Ding (Institute of Software Chinese Academy of Sciences,</i> <i>China)</i>	877
Fair Decision-Making Under Uncertainty Wenbin Zhang (Carnegie Mellon University, USA) and Jeremy C. Weiss (Carnegie Mellon University, USA)	886
 AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations	896
DAC-ML: Domain Adaptable Continuous Meta-Learning for Urban Dynamics Prediction Xin Zhang (Worcester Polytechnic Institute), Yanhua Li (Worcester Polytechnic Institute), Xun Zhou (University of Iowa), Oren Mangoubi (Worcester Polytechnic Institute), Ziming Zhang (Worcester Polytechnic Institute), Vincent Filardi (Worcester Polytechnic Institute), and Jun Luo (Lenovo Group Limited)	906

GANBLR: A Tabular Data Generation Model Yishuo Zhang (Deakin University, Australia), Nayyar A. Zaidi (Deakin University, Australia), Jiahui Zhou (Xian Shiyou University), and Gang Li (Deakin University, Australia)	916
Few-Shot Partial Multi-label Learning Yunfeng Zhao (Shandong University, China), Guoxian Yu (Shandong University, China), Lei Liu (Shandong University, China), Zhongmin Yan (Shandong University, China), Carlotta Domeniconi (George Mason University, USA), and Lizhen Cui (Shandong University, China)	926
Discriminative Additive Scale Loss for Deep Imbalanced Classification and Embedding Zhao Zhang (Hefei University of Technology, China), Weiming Jiang (AI team, Shanghai Shizhuang Information Technology Co., Ltd, China), Yang Wang (Hefei University of Technology, China), Qiaolin Ye (Nanjing Forestry University, China), Mingbo Zhao (Donghua University, China), Mingliang Xu (Zhengzhou University, China), and Meng Wang (Hefei University of Technology, China)	936
Triplet Deep Subspace Clustering via Self-Supervised Data Augmentation Zhao Zhang (Hefei University of Technology, China), Xianzhen Li (Soochow University, China), Haijun Zhang (Harbin Institute of Technology (Shenzhen), China), Yi Yang (University of Technology Sydney, Australia), Shuicheng Yan (Sea AI Lab (SAIL) & National University of Singapore, Singapore), and Meng Wang (Hefei University of Technology, China)	946
Temporal Clustering with External Memory Network for Disease Progression Modeling Zicong Zhang (The Ohio State University, USA), Changchang Yin (The Ohio State University, USA), and Ping Zhang (The Ohio State University, USA)	956
Deep Incremental RNN for Learning Sequential Data: A Lyapunov Stable Dynamical System Ziming Zhang (Worcester Polytechnic Institute, USA), Guojun Wu (Worcester Polytechnic Institute, USA), Yanhua Li (Worcester Polytechnic Institute, USA), Yun Yue (Worcester Polytechnic Institute, USA), and Xun Zhou (University of Iowa, USA)	966
Short Papers	
PIETS: Parallelised Irregularity Encoders for Forecasting with Heterogeneous Time-Series Futoon M. Abushaqra (RMIT University, Australia), Hao Xue (RMIT University, Australia), Yongli Ren (RMIT University, Australia), and Flora D. Salim (RMIT University, Australia)	976
TEST-GCN: Topologically Enhanced Spatial-Temporal Graph Convolutional Networks for Traffic	с

Forecasting	82
Muhammad Afif Ali (Grab-NUS AI Lab, Singapore), Suriya Venkatesan	
(GrabTaxi Holdings, Singapore), Victor Liang (GrabTaxi Holdings,	
Singapore), and Hannes Kruppa (GrabTaxi Holdings, Singapore)	

DIVINIA: Rare Object Localization and Search in Overhead Imagery	
Jonathan Amazon (Novateur Research Solutions, USA), Khurram Shafique	
(Novateur Research Solutions, USA), Zeeshan Rasheed (Novateur Research	
Solutions, USA), and Aaron Reite (NGA, USA)	

Cold Item Integration in Deep Hybrid Recommenders via Tunable Stochastic Gates
LOGIC: Probabilistic Machine Learning for Time Series Classification
K-Means for Evolving Data Streams
Generating Explanations for Recommendation Systems via Injective VAE
 Self-Learn to Explain Siamese Networks Robustly
 Heterogeneous Stream-Reservoir Graph Networks with Data Assimilation
Improving Deep Forest by Exploiting High-Order Interactions
Promoting Fairness Through Hyperparameter Optimization
 Temporal Multi-view Graph Convolutional Networks for Citywide Traffic Volume Inference 1042 Shaojie Dai (Ocean University of China, China), Jinshuai Wang (Ocean University of China, China), Chao Huang (The University of Hong Kong, China), Yanwei Yu (Ocean University of China, China), and Junyu Dong (Ocean University of China, China)
 Gain-Some-Lose-Some: Reliable Quantification Under General Dataset Shift

 Fair Graph Auto-Encoder for Unbiased Graph Representations with Wasserstein Distance
GCN-SE: Attention as Explainability for Node Classification in Dynamic Graphs
 Heterogeneous Graph Neural Architecture Search
 Attacking Similarity-Based Sign Prediction
Recurrent Neural Networks Meet Context-Free Grammar: Two Birds with One Stone
PaGAN: Generative Adversarial Network for Patent Understanding
 Federated Principal Component Analysis for Genome-Wide Association Studies

Thin Semantics Enhancement via High-Frequency Priori Rule for Thin Structures Segmentation 1096 Yuting He (Southeast University, China), Rongjun Ge (Southeast University, China), Jiasong Wu (Southeast University, China; Centre de Recherche en Information Biomedicale Sino-Francais), Jean-Louis Coatrieux (Univ Rennes, Inserm, France; Centre de Recherche en Information Biomedicale Sino-Francais), Huazhong Shu (Southeast University, China; Centre de Recherche en Information Biomedicale Sino-Francais), Yang Chen (Southeast University, China; Centre de Recherche en Information Biomedicale Sino-Francais), Guanyu Yang (Southeast University, China; Centre de Recherche en Information Biomedicale Sino-Francais), and Shuo Li (University of Western Ontario, Canada)
Source Inference Attacks in Federated Learning
MC-RGCN: A Multi-channel Recurrent Graph Convolutional Network to Learn High-Order Social Relations for Diffusion Prediction
Trajectory WaveNet: A Trajectory-Based Model for Traffic Forecasting
Spikelet: An Adaptive Symbolic Approximation for Finding Higher-Level Structure in Time Series 1120 Makoto Imamura (Tokai University, Japan) and Takaaki Nakamura (Mitsubishi Electric Corporation, Japan)
Bi-Level Attention Graph Neural Networks
 SCALP — Supervised Contrastive Learning for Cardiopulmonary Disease Classification and Localization in Chest X-Rays using Patient Metadata
 Heterogeneous Graph Neural Network with Distance Encoding

An Effective and Robust Framework by Modeling Correlations of Multiplex Network Embedding 1144
Pengfei Jiao (Tianjin University, China), Ruili Lu (Tianjin University, China), Di Jin (Tianjin University, China), Yinghui Wang (Tianjin University, China), and Huaming Wu (Tianjin University, China)
Adversarial Learning of Balanced Triangles for Accurate Community Detection on Signed Networks
 Addressing Exposure Bias in Uplift Modeling for Large-Scale Online Advertising
ENGINE: Enhancing Neuroimaging and Genetic Information by Neural Embedding
Learning Personal Human Biases and Representations for Subjective Tasks in Natural Language Processing
Detecting and Mitigating Test-Time Failure Risks via Model-Agnostic Uncertainty Learning 1174 Preethi Lahoti (Max Planck Institute for Informatics, Germany), Krishna Gummadi (Max Planck Institute for Software Systems, Germany), and Gerhard Weikum (Max Planck Institute for Informatics, Germany)
Learnable Structural Semantic Readout for Graph Classification
Out-of-Category Document Identification using Target-Category Names as Weak Supervision 1186 Dongha Lee (University of Illinois at Urbana-Champaign, USA), Dongmin Hyun (Pohang University of Science and Technology, Republic of Korea), Jiawei Han (University of Illinois at Urbana-Champaign, USA), and Hwanjo Yu (Pohang University of Science and Technology, Republic of Korea)

Robust BiPoly-Matching for Multi-granular Entities
 StarGAT: Star-Shaped Hierarchical Graph Attentional Network for Heterogeneous Network Representation Learning
Adversarial Regularized Reconstruction for Anomaly Detection and Generation
HyperTeNet: Hypergraph and Transformer-Based Neural Network for Personalized List Continuation
Communication Efficient Tensor Factorization for Decentralized Healthcare Networks
An Ensemble of Naive Bayes Classifiers for Uncertain Categorical Data
Accurately Quantifying Under Score Variability
Semi-Supervised Graph Attention Networks for Event Representation Learning

 Matrix Profile XXIII: Contrast Profile: A Novel Time Series Primitive that Allows Real World Classification
PhyFlow: Physics-Guided Deep Learning for Generating Interpretable 3D Flow Fields
 Exploring Reflective Limitation of Behavior Cloning in Autonomous Vehicles
MetaEDL: Meta Evidential Learning for Uncertainty-Aware Cold-Start Recommendations 1258 Krishna Prasad Neupane (Rochester Institute of Technology, USA), Ervine Zheng (Rochester Institute of Technology, USA), and Qi Yu (Rochester Institute of Technology, USA)
STING: Self-Attention Based Time-Series Imputation Networks using GAN 1264 Eunkyu Oh (Samsung Research, Republic of Korea), Taehun Kim (Samsung Research, Republic of Korea), Yunhu Ji (Samsung Research, Republic of Korea), and Sushil Khyalia (Samsung Research, Republic of Korea)
Multi-classification Prediction of Alzheimer's Disease Based on Fusing Multi-modal Features
A General Framework for Mining Concept-Drifting Data Streams with Evolvable Features 1276 Jiaqi Peng (University of Electronic Science and Technology of China, China), Jinxia Guo (University of Electronic Science and Technology of China, China), Qinli Yang (University of Electronic Science and Technology of China, China), Jianyun Lu (University of Electronic Science and Technology of China, China), and Junming Shao (University of Electronic Science and Technology of China, China)
Density-Based Clustering for Adaptive Density Variation
GQNAS: Graph Q Network for Neural Architecture Search

Incomplete Multi-view Multi-label Active Learning	294
Causal Discovery with Flow-Based Conditional Density Estimation	300
Scalable Pareto Front Approximation for Deep Multi-objective Learning	306
Alternative Ruleset Discovery to Support Black-box Model Predictions	312
 Practitioner-Centric Approach for Early Incident Detection using Crowdsourced Data for Emergency Services	318
T^3: Domain-Agnostic Neural Time-Series Narration	324
Compressibility of Distributed Document Representations	330
 Multimodal N-Best List Rescoring with Weakly Supervised Pre-training in Hybrid Speech Recognition	336
Learning Dynamic User Interactions for Online Forum Commenting Prediction	342
 Pest-YOLO: Deep Image Mining and Multi-feature Fusion for Real-Time Agriculture Pest Detection	348
PSANet - Subspace Attention for Personalized Compatibility	354

Streaming Dynamic Graph Neural Networks for Continuous-Time Temporal Graph Modeling 1361 Sheng Tian (Ant Group, China), Tao Xiong (Congyun Inc, China), and Leilei Shi (Ant Group, China)
DhakaNet: Unstructured Vehicle Detection using Limited Computational Resources
Detecting Adversaries in Crowdsourcing
A Lookahead Algorithm for Robust Subspace Recovery
Dynamic Attributed Graph Prediction with Conditional Normalizing Flows
Aspect-Based Sentiment Classification via Reinforcement Learning
 Exploring the Long Short-Term Dependencies to Infer Shot Influence in Badminton Matches 1397 Wei-Yao Wang (National Yang Ming Chiao Tung University, Taiwan), Teng-Fong Chan (National Yang Ming Chiao Tung University, Taiwan), Hui-Kuo Yang (National Yang Ming Chiao Tung University, Taiwan), Chih-Chuan Wang (National Yang Ming Chiao Tung University, Taiwan), Yao-Chung Fan (National Chung Hsing University, Taiwan), and Wen-Chih Peng (National Yang Ming Chiao Tung University, Taiwan)
Constrained Non-Affine Alignment of Embeddings
Summarizing User-Item Matrix by Group Utility Maximization

BioHanBERT: A Hanzi-Aware Pre-Trained Language Model for Chinese Biomedical Text Mining 1415
Xiaosu Wang (Fudan University, China), Yun Xiong (Fudan University, China) Hao Niu (Fudan University, China), Iinowen Yue (Fudan
University, China), Yangyong Zhu (Fudan University, China), and Philip
S. Yu (University of Illinois at Chicago, USA)
Adapting Membership Inference Attacks to GNN for Graph Classification: Approaches and Implications 1421 Bang Wu (Monash University, Australia), Xiangwen Yang (Monash 1421 University, Australia), Shirui Pan (Monash University, Australia), and Xingliang Yuan (Monash University, Australia)
Composition-Enhanced Graph Collaborative Filtering for Multi-Behavior Recommendation 1427 Daqing Wu (Peking University, China; Damo Academy, Alibaba Group, China), Xiao Luo (Peking University, China; Damo Academy, Alibaba Group, China), Zeyu Ma (Harbin Institute of Technology, China), Chong Chen (Peking University, China; Damo Academy, Alibaba Group, China), Pengfei Wang (Alibaba Group, China), Minghua Deng (Peking University, China), and Jinwen Ma (Peking University, China)
Boosting Deep Ensemble Performance with Hierarchical Pruning
Overfitting Avoidance in Tensor Train Factorization and Completion: Prior Analysis and
Inference1439Le Xu (The University of Hong Kong), Lei Cheng (Zhejiang University, China), Ngai Wong (The University of Hong Kong), and Yik-Chung Wu (The University of Hong Kong)
Towards Stochastic Neural Network via Feature Distribution Calibration
 Zero-Shot Key Information Extraction from Mixed-Style Tables: Pre-training on Wikipedia 1451 <i>Qingping Yang (Institute of Computing Technology, CAS, China;</i> <i>University of Chinese Academy of Sciences, China), Yingpeng Hu</i> <i>(Institute of Computing Technology, CAS, China; University of Chinese</i> <i>Academy of Sciences, China), Rongyu Cao (Institute of Computing</i> <i>Technology, CAS, China; University of Chinese Academy of Sciences,</i> <i>China), Hongwei Li (P.A.I. Ltd., China), and Ping Luo (Institute of</i> <i>Computing Technology, CAS, China; University of Chinese Academy of</i> <i>Sciences, China; Peng Cheng Laboratory, China)</i>
Limited-Memory Common-Directions Method with Subsampled Newton Directions for Large-Scale Linear Classification
Online Testing of Subgroup Treatment Effects Based on Value Difference

Jointly Multi-similarity Loss for Deep Metric Learning	9
Adaptive Spatio-Temporal Convolutional Network for Traffic Prediction	5
 MERITS: Medication Recommendation for Chronic Disease with Irregular Time-Series	1
Generating Structural Node Representations via Higher-Order Features and Adversarial Learning	7
A Multi-view Confidence-Calibrated Framework for Fair and Stable Graph Representation Learning	3
Unified Fairness from Data to Learning Algorithm	9
 C^3-GAN: Complex-Condition-Controlled Urban Traffic Estimation Through Generative Adversarial Networks	5
LIFE: Learning Individual Features for Multivariate Time Series Prediction with Missing Values	1
Graph Neighborhood Routing and Random Walk for Session-Based Recommendation	7
AdaBoosting Clusters on Graph Neural Networks	3

Topic-Attentive Encoder-Decoder with Pre-Trained Language Model for Keyphrase Generation 1529 Cangqi Zhou (Nanjing University of Science and Technology, China), Jinling Shang (Chinese Academy of Sciences, China), Jing Zhang (Nanjing University of Science and Technology, China), Qianmu Li (Nanjing University of Science and Technology, China), and Dianming Hu (SenseDeal Intelligent Technology Co., Ltd., China)
Joint Scence Network and Attention-Guided for Image Captioning
Multi-objective Distributional Reinforcement Learning for Large-Scale Order Dispatching 1541 Fan Zhou (Shanghai University of Finance and Economics), Chenfan Lu (Shanghai University of Finance and Economics), Xiaocheng Tang (DiDi AI Labs), Fan Zhang (DiDi AI Labs), Zhiwei Qin (DiDi AI Labs), Jieping Ye (DiDi AI Labs), and Hongtu Zhu (DiDi AI Labs)
Self-Supervised Universal Domain Adaptation with Adaptive Memory Separation
A New Multiple Instance Algorithm using Structural Information
Operation-Level Progressive Differentiable Architecture Search
SMATE: Semi-Supervised Spatio-Temporal Representation Learning on Multivariate Time Series. 1565 Jingwei Zuo (DAVID Lab, University of Versailles, Université Paris-Saclay, Versailles, France), Karine Zeitouni (DAVID Lab, University of Versailles, Université Paris-Saclay, Versailles, France), and Yehia Taher (DAVID Lab, University of Versailles, Université Paris-Saclay, Versailles, France)

Author Index