2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC 2021)

Perth, Australia 1-4 December 2021

IEEE Catalog Number: ISBN:

CFP21245-POD 978-1-6654-2477-6

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP21245-POD

 ISBN (Print-On-Demand):
 978-1-6654-2477-6

 ISBN (Online):
 978-1-6654-2476-9

ISSN: 1555-094X

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC) PRDC 2021

Table of Contents

lessage from the Organizing Chairsviii
rganizing Committeeix
rogram Committee x
teering Committee xi
eviewersxiii
ponsors and Supportersxv
ession 1: Dependability
andling Noise in Search-Based Scenario Generation for Autonomous Driving Systems
enchmarking Safety Monitors for Image Classifiers with Machine Learning
n Empirical Evaluation of the Effectiveness of Smart Contract Verification Tools
ession 2: Architecture and System Design
loving Target Defense Strategy in Critical Embedded Systems: A Game-Theoretic Approach 27 Maxime Ayrault (Telecom-paris, Institut Polytechnique de Paris, France), Étienne Borde (Telecom-paris, Institut Polytechnique de Paris, France), Ulrich Kühne (Telecom-paris, Institut Polytechnique de Paris, France), and Jean Leneutre (Telecom-paris, Institut Polytechnique de Paris, France)
xtending the Concept of Voting Structures to Support Path-Based Replication Strategies

Automated Security Assessment for the Internet of Things
Detecting Intrusions by Voting Diverse Machine Learners: Is It Really Worth?
Session 3: Fault Tolerance
Integrating Information Flow Analysis in Unifying Theories of Programming 67 Chunyan Mu (Department of Computing and Games, Teesside University, UK) and Guoqiang Li (School of Software, Shanghai Jiao Tong University, China)
Egalitarian Byzantine Fault Tolerance
Measuring Lead Times for Failure Prediction
Session 4: Reliability
Availability Modeling for Drone Image Processing Systems with Adaptive Offloading
Reliability Assessment of Multi-Sensor Perception System in Automated Driving Functions
Synergising Reliability Modelling Languages: BDMPs and Repairable DFTs
Session 5: Security
SABER-GPU: A Response-Based Cryptography Algorithm for SABER on the GPU

A Practical and Secure Stateless Order Preserving Encryption for Outsourced Databases	133
Are you for Real? Authentication in Dynamic IoT Systems Mehdi Karimibiuki (University of British Columbia, Canada), Karthik Pattabiraman (University of British Columbia, Canada), and André Ivanov (University of British Columbia, Canada)	143
Session 6: Fast Abstracts	
Machine Learning Techniques for the Prediction of NoC Core Mapping Performance	153
An Efficient Application Core Mapping Algorithm for Wireless Network-on-Chip	157
A VAE Conversion Method for Private Data Linkage	61
Author Index1	165