2021 IEEE 30th Asian Test Symposium (ATS 2021)

Virtual Conference 22 – 24 November 2021

IEEE Catalog Number: CFP21067-POD **ISBN:**

978-1-6654-4052-3

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21067-POD
ISBN (Print-On-Demand):	978-1-6654-4052-3
ISBN (Online):	978-1-6654-4051-6
ISSN:	1081-7735

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE 30th Asian Test Symposium (ATS) **ATS 2021**

Table of Contents

Foreword	ix
Organizing Committee	x
Program Committee	xii
Steering Committee	xiv
Tutorials	xv
Keynotes	xvi
Sponsors	
Call for Papers	xx

2021 IEEE 30th Asian Test Symposium

ChaoPIM: A PIM-based Protection Framework for DNN Accelerators Using Chaotic Encryption .1 Ning Lin (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Xiaoming Chen (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Chunwei Xia (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Ing Ye (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences; University of Chinese Academy of Sciences), and Xiaowei Li (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences), and Xiaowei Li (Institute of Computing Technology, Chinese Academy of Sciences; University of Chinese Academy of Sciences)
 Twine Stack: A Hybrid Mechanism Achieving Less Cost for Return Address Protection
Lightweight Hardware-Based Memory Protection Mechanism on IoT Processors
Application of Residue Sampling to RF/AMS Device Testing
Robust Fault-Tolerant Design Based on Checksum and On-Line Testing for Memristor Neural Network 25 Michihiro Shintani (Nara Institute of Science and Technology, Japan), Mamoru Ishizaka (Nara Institute of Science and Technology, Japan), and Michiko Inoue (Nara Institute of Science and Technology, Japan)

Temperature-Aware Evaluation and Mitigation of Logic Soft Errors Under Circuit Variations 31 Warin Sootkaneung (Rajamangala University of Technology Phra Nakhon, Thailand), Sasithorn Chookaew (King Mongkut's University of Technology North Bangkok, Thailand), and Suppachai Howimanporn (King Mongkut's University of Technology North Bangkok, Thailand)
Note on CapsNet-Based Wafer Map Defect Pattern Classification
SeGa: A Trojan Detection Method Combined With Gate Semantics
CausalTester: Measuring the Consistency of Replicated Services via Causality Semantics
Detection of Stuck-at and Bridging Fault in Reversible Circuits using an Augmented Circuit55 Mousum Handique (Assam University, India), Jantindra Kumar Deka (Indian Institute of Technology Guwahati, India), and Santosh Biswas (Indian Institute of Technology Bhilai, India)
 Fault Analysis of the Beam Acceleration Control System at the European XFEL using Data Mining
A Novel Compaction Approach for SBST Test Programs
 Effective SAT-based Solutions for Generating Functional Sequences Maximizing the Sustained Switching Activity in a Pipelined Processor

 Side-Channel Attacks on Triple Modular Redundancy Schemes
Polynomial Formal Verification of Prefix Adders
 Further Analysis of Laser-induced IR-drop
Investigation of 0.18µm CMOS Sensitivity to BTI and HCI Mechanisms under Extreme Thermal Stress Conditions
On Modeling CMOS Library Cells for Cell Internal Fault Test Pattern Generation
Positive and Negative Extra Clocking of LFSR Seeds for Reduced Numbers of Stored Tests 109 Irith Pomeranz (Purdue University, U.S.A.)
Towards a Secure Integrated Heterogeneous Platform via Cooperative CPU/GPU Encryption . 115 Zhendong Wang (University of Texas at Dallas), Rujia Wang (Illinois Institute of Technology), Zihang Jiang (Tsinghua University), Xulong Tang (University of Pittsburgh), Shouyi Yin (Tsinghua University), and Yang Hu (University of Texas at Dallas)
A Design of Approximate Voting Schemes for Fail-Operational Systems
GPU-Accelerated Timing Simulation of Systolic-Array-Based AI Accelerators
Analyzing Transient Faults and Functional Error Rates of a RISC-V Core: A Case Study 133 Dun-An Yang (National Tsing Hua University, Taiwan), Jing-Jia Liou (National Tsing Hua University, Taiwan), and Harry Chen (MediaTek Inc., Computing and AI Technology Group, Taiwan)

High Precision Measurement of Sub-Nano Ampere Current in ATE Environment
Keno Sato (ROHM Semiconductor, Japan), Takayuki Nakatani (Gunma
University, Japan), Takashi Ishida (ROHM Semiconductor, Japan),
Toshiyuki Okamoto (ROHM Semiconductor, Japan), Tamotsu Ichikawa (ROHM
Semiconductor, Japan), Shogo Katayama (Gunma University, Japan), Gaku
Ogihara (Gunma University, Japan), Daisuke Iimori (Gunma University,
Japan), Yujie Zhao (Gunma University, Japan), Jianglin Wei (Gunma
University, Japan), Anna Kuwana (Gunma University, Japan), Kazumi
Hatayama (Gunma University, Japan), and Haruo Kobayashi (Gunma
University, Japan)
A Power Reduction Method for Scan Testing in Ultra-Low Power Designs
(Renesas Electronics Corporation, Japan), and Jun Matsushima (Renesas
Electronics Corporation, Japan)
Author Index