2021 IEEE International Conference on Big Knowledge (ICBK 2021)

Auckland, New Zealand 7 – 8 December 2021

IEEE Catalog Number: CFP21M78-POD **ISBN:**

978-1-6654-3859-9

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21M78-POD
ISBN (Print-On-Demand):	978-1-6654-3859-9
ISBN (Online):	978-1-6654-3858-2

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE International Conference on Big Knowledge (ICBK) ICBK 2021

Table of Contents

Welcome from the ICBK 2021 Chairs	xiii
Organizing Committee	xv
Programme Committee	xvi
Track Chairs	xix
Keynote Abstracts	xx

Keynote

Track 1: Machine Learning and Knowledge Graphs

Personalized Recommendation Based on Entity Attributes and Graph Features
Unsupervised Type Constraint Inference in Bilinear Knowledge Graph Completion Models 15 Yuxun Lu (National Institute of Informatics, Japan & Graduate University for Advanced Studies, Japan) and Ryutaro Ichise (National Institute of Informatics, Japan & Graduate University for Advanced Studies, Japan)
 A Novel Homophily-Aware Correction Approach for Crowdsourced Labels Using Information Entropy
Knowledge Distillation via Weighted Ensemble of Teaching Assistants

 An Empirical Study of Deep Learning Frameworks for Melanoma Cancer Detection Using Transfer Learning and Data Augmentation
Accelerating Learning Bayesian Network Structures by Reducing Redundant CI Tests
 Surprisingness – A Novel Objective Interestingness Measure in Hypergraph Pattern Mining from Knowledge Graphs for Common Sense Learning
Aggregation Enhanced Graph Convolutional Network for Graph Classification
 HSNP-Miner: High Utility Self-Adaptive Nonoverlapping Pattern Mining
Graph Neural Network for Ethereum Fraud Detection
Label Distribution Learning by Exploiting Feature-Label Correlations Locally
Improving Gradient-Based DAG Learning by Structural Asymmetry
Intuitionistic Fuzzy Requirements Aggregation for Graph Pattern Matching with Group Decision Makers

Meta-Path Enhanced Knowledge Graph Convolutional Network for Recommender Systems 11	0
Ru Wang (Hefei University of Technology, China), Meng Wu (Hefei	
University of Technology, China), and Shengwei Ji (Hefei University of	
Technology, China)	

Treatment Recommendation with Preference-Based Reinforcement Learning	117
Nan Xu (University of Southern California, USA), Nitin Kamra	
(University of Southern California, USA), and Yan Liu (University of	
Southern California, USA)	

Track 2: Machine Learning for Streaming Data

MTSC-GE: A Novel Graph Based Method for Multivariate Time Series Clustering	}
Gaussian Model-Based Fully Convolutional Networks for Multivariate Time Series Classification	
Changyang Tai (Hefei University of Technology, China), Ze Yang (Hefei University of Technology, China), Huicheng Zhang (Hefei University of Technology, China), Gongqing Wu (Hefei University of Technology, China), Junwei Lv (Hefei University of Technology, China), and Xianyu Bao (Shenzhen Academy of Inspection and Quarantine Shenzhen, China)	
An Efficient Framework for Multi-Label Learning in Non-Stationary Data Stream)
An Efficient Framework for Sentence Similarity Inspired by Quantum Computing	,
CSRDA: Cost-Sensitive Regularized Dual Averaging for Handling Imbalanced and High-Dimensional Streaming Data	ł

Recognizing Characters and Relationships from Videos via Spatial-Temporal and Multimodal Cues
Recurrent Neural Networks for Learning Long-Term Temporal Dependencies with Reanalysis of Time Scale Representation
 Temporal Analysis of Knowledge Networks

Track 3: Reasoning with Knowledge Graphs

Implicit Business Competitor Inference Using Heterogeneous Knowledge Graph
Research on Crowdsourcing Truth Inference Method Based on Graph Embedding
Jointly Modeling Fact Triples and Text Information for Knowledge Base Completion
A Scheme for Kinship Reasoning Based on Ontology
A Divide-and-Conquer Method for Computing Preferred Extensions of Argumentation Frameworks

Track 4: Knowledge Graph Analytics and Applications

Constructing COVID-19 Knowledge Graph from a Large Corpus of Scientific Articles Wei Emma Zhang (University of Adelaide, Australia) and Queen Nguyen (Clever Agriculture Pty. Ltd., Australia)	237
YABKO - Yet Another Big Knowledge Organization Ruqian Lu (Chinese Academy of Sciences, China), Chaoqun Fei (University of Chinese Academy of Sciences, China), Chuanqing Wang (University of Chinese Academy of Sciences, China), Yu Huang (Beijing Deepleaper Co., Ltd., China), and Songmao Zhang (Chinese Academy of Sciences, China)	245
UFreS: A New Technique for Discovering Frequent Subgraph Patterns in Uncertain Graph Databases	253
Farnan Anmea (University of Dnaka, Bangladesn), Ma. Samiulian (University of Dhaka, Bangladesh), and Carson K. Leung (University of Manitoba, Canada)	
Attribute Similarity and Relevance-Based Product Schema Matching for Targeted Catalog Enrichment Evan Shieh (Amazon, USA), Saul Simhon (Amazon, USA), Geetha Aluri (Amazon, USA), Giorgos Papachristoudis (Amazon, USA), Doa Yakut (Amazon, USA), and Dhanya Raghu (Amazon, USA)	261
Diffxtract: Joint Discriminative Product Attribute-Value Extraction Varun Embar (University of California-Santa Cruz, USA), Andrey Kan (University of Adelaide, Australia), Bunyamin Sisman (Amazon, USA), Christos Faloutsos (Carnegie Mellon University, USA), and Lise Getoor (University of California-Santa Cruz, USA)	271

Track 5: Knowledge Graphs and NLP

Global Semantics with Boundary Constraint Knowledge Graph for Chinese Financial Event Detection Yin Wang (Shanghai University, China), Nan Xia (Shanghai University, China), Xiangfeng Luo (Shanghai University, China), and Jinhui Li (Shanghai University, China)	281
A Semi-Supervised Bilingual Lexicon Induction Method for Distant Language Pairs Based on Bidirectional Adversarial Model Wenwu Zhi (Hefei University of Technology, China) and Yuhong Zhang (Hefei University of Technology, China)	. 290
Multi-Level Spatio-Temporal Matching Network for Multi-Turn Response Selection in Retrieval-Based Dialogue Systems <i>Mei Ma (Xi'an Jiaotong University, China), Jianji Wang (Xi'an Jiaotong University, China), Xuguang Lan (Xi'an Jiaotong University, China), and Nanning Zheng (Xi'an Jiaotong University, China)</i>	. 298
HfGCN: Hierarchical Fused GCN for Joint Entity and Relation Extraction Wei Nong (East China Normal University, China), Taolin Zhang (East China Normal University, China), Shuangji Yang (East China Normal University, China), Nan Hu (East China Normal University, China), and Xiaofeng He (East China Normal University, China)	.307

Topic-Guided Knowledge Graph Construction for Argument Mining
Gated Graph Neural Networks (GG-NNs) for Abstractive Multi-Comment Summarization 323 Huixin Zhan (Texas Tech University, USA), Kun Zhang (Xavier University of Louisiana, USA), Chenyi Hu (University of Central Arkansas, USA), and Victor Sheng (Texas Tech University, USA)
Multi-Round Parsing-Based Multiword Rules for Scientific Knowledge Extraction
 Bridging the Language Gap: Knowledge Injected Multilingual Question Answering
A Knowledge Enhanced Chinese GaoKao Reading Comprehension Method

Track 6: Social Network and Representation Learning

A Proximal Alternating-Direction-Method-of-Multipliers-Based Nonnegative Latent Factor Model	353
Fanghui Bi (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China & University of Chinese Academy of Sciences, China) and Di Wu (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China & University of Chinese Academy of Sciences, China)	
An Ensemble Latent Factor Model for Highly Accurate Web Service QoS Prediction	361
Influence Maximization Using User Connectivity Guarantee in Social Networks Xiyu Qiao (Northeastern University, China), Yuliang Ma (Northeastern University, China), Ye Yuan (Northeastern University, China), and Xiangmin Zhou (RMIT University, Australia)	369

Transductive Data Augmentation with Relational Path Rule Mining for Knowledge Graph Embedding	377
Watanabe (Nara Institute of Science & Technology, Japan)	
Fair Representation Learning in Knowledge-Aware Recommendation Bingke Xu (University of Electronic Science and Technology of China, China), Yue Cui (University of Electronic Science and Technology of China, China), Zipeng Sun (University of Electronic Science and Technology of China, China), Liwei Deng (University of Electronic Science and Technology of China, China), and Kai Zheng (University of Electronic Science and Technology of China, China)	385
Learning Dynamic Preference Structure Embedding from Temporal Networks Tongya Zheng (Zhejiang University, China), Zunlei Feng (Zhejiang University, China), Yu Wang (Zhejiang University, China), Chengchao Shen (Central South University, China), Mingli Song (Zhejiang University, China), Xingen Wang (Zhejiang University, China), Xinyu Wang (Zhejiang University, China), Chun Chen (Zhejiang University, China), and Hao Xu (Zhejiang Lab, China)	393

Track 7: Knowledge Graphs for Education

 ToFM: Topic-Specific Facet Mining by Facet Propagation within Clusters	2
Multi-Task Learning for Multi-Turn Dialogue Generation with Topic Drift Modeling	C
 Fuzzy c-Means Clustering with Discriminative Projection	3
Consistency-Aware Multi-Modal Network for Hierarchical Multi-Label Classification in Online Education System	5

Track 8: Operations Research, Optimisation and Machine Learning

Mining Unexpected Sequential Patterns from MOOC Data
Query-Focused Abstractive Summarization via Question-Answering Model
A Robust Mathematical Model for Blood Supply Chain Network Using Game Theory
Answer-Centric Local and Global Information Fusion for Conversational Question Generation 454
Panpan Lei (Hefei University of Technology, China & Hefei Comprehensive National Science Center, China) and Xiao Sun (Hefei University of Technology, China & Hefei Comprehensive National Science Center, China)
A Character-Word Graph Attention Networks for Chinese Text Classification
A Genetic Algorithm for Residual Static Correction
A Survey on Optimisation-Based Semi-Supervised Clustering Methods
Question-Formed Query Suggestion
Intervention Prediction for Patients with Pressure Injury Using Random Forest