2021 International Workshop on Performance, Portability and Productivity in HPC (P3HPC 2021)

St. Louis, Missouri, USA 14 November 2021

IEEE Catalog Number: ISBN: CFP21S71-POD 978-1-6654-2440-0

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21S71-POD
ISBN (Print-On-Demand):	978-1-6654-2440-0
ISBN (Online):	978-1-6654-2439-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 International Workshop on Performance, Portability and Productivity in HPC (P3HPC) **P3HPC 2021**

Table of Contents

Session 2

Revisiting a Metric for Performance Portability
 Mamba: Portable Array-based Abstractions for Heterogeneous High-Performance Systems
oneAPI Open-Source Math Library Interface
 Analyzing Reduction Abstraction Capabilities

Session 3

Evaluation of Performance Portability of Applications and Mini-Apps Across AMD, Intel and NVIDIA GPUs	45
JaeHyuk Kwack (Argonne National Laboratory, USA), John Tramm (Argonne National Laboratory, USA), Colleen Bertoni (Argonne National Laboratory, USA), Yasaman Ghadar (Argonne National Laboratory, USA), Brian Homerding (Argonne National Laboratory, USA), Esteban Rangel (Argonne National Laboratory, USA), Christopher Knight (Argonne National Laboratory, USA), and Scott Parker (Argonne National Laboratory, USA)	
Case Study of Using Kokkos and SYCL as Performance-Portable Frameworks for Milc-Dslash Benchmark on NVIDIA, AMD and Intel GPUs Amanda S. Dufek (NERSC/LBNL, USA), Rahulkumar Gayatri (NERSC/LBNL, USA), Neil Mehta (NERSC/LBNL, USA), Douglas Doerfler (NERSC/LBNL (retired), USA), Brandon Cook (NERSC/LBNL, USA), Yasaman Ghadar (Argonne National Laboratory, USA), and Carleton DeTar (University of Utah, USA)	57

Session 4

Evaluating Performance and Portability of a core Bioinformatics Kernel on Multiple Vendor GPUs	
Muhammad Haseeb (Florida International University, USA), Nan Ding (Lawrence Berkeley National Laboratory, USA), Jack Deslippe (Lawrence Berkeley National Laboratory, USA), and Muaaz Gul Awan (Lawrence Berkeley National Laboratory, USA)	
Optimization Strategy for a Performance Portable Vlasov Code Yuuichi Asahi (Japan atomic energy agency, Japan), Guillaume Latu (CEA, Franc), Julien Bigot (CEA, Franc), and Virginie Grandgirard (CEA, Franc)	79

Author Index		9)3	3
--------------	--	---	----	---