2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI 2021)

Virtual Conference 1-3 November 2021

Pages 1-744

IEEE Catalog Number: CFP21091-POD ISBN:

978-1-6654-0899-8

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP21091-POD

 ISBN (Print-On-Demand):
 978-1-6654-0899-8

 ISBN (Online):
 978-1-6654-0898-1

ISSN: 1082-3409

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI) ICTAI 2021

Table of Contents

Foreword	xxxiv
Organizing Committee	
Program Committee	
Reviewers	xxxvii
AI Foundation - 1	
Prediction and Inference in a Partially Hidden Markov-Switching Framework with Autoregression. Application to Machinery Health Diagnosis	1
Investigating the Generalization of Image Classifiers with Augmented Test Sets	10
False Positive Detection and Prediction Quality Estimation for LiDAR Point Cloud Segmentation Pascal Colling (University of Wuppertal, Germany), Matthias Rottmann (University of Wuppertal, Germany), Lutz Roese-Koerner (Aptiv, Germany), and Hanno Gottschalk (University of Wuppertal, Germany)	18
Stratified Cross-Validation on Multiple Columns	26
Assessing Optimal Forests of Decision Trees	32
Global Attention Augmentation Ghost Module: More Features from Lightweight Global Attention Extraction	40
Tenna L. Gun Cincerony, China)	

Adversarial Weighting for Domain Adaptation in Regression
AI Planning - 1
Inference-Based Hierarchical Reinforcement Learning for Cooperative Multi-Agent Navigation57 Lijun Xia (Sun Yat-sen University, China), Chao Yu (Sun Yat-sen University, China), and Zifan Wu (Sun Yat-sen University, China)
Collision-Aware Multi-Robot Motion Coordination Deep-RL with Dynamic Priority Strategy 65 Liang Zhao (Beijing Jiaotong University, China), Sheng Han (Beijing Jiaotong University, China; Key Laboratory of Intelligent Passenger Service of Civil Aviation, China), and Youfang Lin (Beijing Jiaotong University, China; Key Laboratory of Intelligent Passenger Service of Civil Aviation, China)
Decentralized Coalition Structure Formation for Interdependent Tasks Allocation
Autonomous Agents for The Single Track Road Problem
Expert-Guided Policy Optimization by Latent Space Planning with Attention
Sparse Real-Time Decision Diagrams for Continuous Multi-Robot Path Planning
AI Machine Learning - 1
A Neurobiologically-Inspired Deep Learning Framework for Autonomous Context Learning 97 David W. Ludwig II (Department of Computer Science, Middle Tennessee State University, USA), Lucas W. Remedios (Department of Computer Science, Middle Tennessee State University, USA), and Joshua L. Phillips (Department of Computer Science, Middle Tennessee State University, USA)
Incorporating Proportional Sparse Penalty for Causal Structure Learning

Ensemble Learning Based Gene Regulatory Network Inference	13
IncrAMLSI: Incremental Learning of Accurate Planning Domains from Partial and Noisy Observations	21
Maxence Grand (Univ. Grenoble Alpes, LIG France), Humbert Fiorino (Univ. Grenoble Alpes, LIG, France), and Damien Pellier (Univ. Grenoble Alpes, LIG, France)	
Query-Based Summarization using Reinforcement Learning and Transformer Mode	29
Estimation Error Correction in Deep Reinforcement Learning for Deterministic Actor-Critic Methods	37
Multi-Task Learning with Attention: Constructing Auxiliary Tasks for Learning to Learn	45
AI Neural Nets - 1	
Recurrent Temporal Point Process Network for First and Repeated Clinical Events	53
Research on GNSS/DR Method Based on B-Spline and Optimized BP Neural Network	61
DeepMark: Embedding Watermarks into Deep Neural Network using Pruning	59

An Interpretation of Convolutional Neural Networks for Motif Finding from the View of Probability	176
Ju (Department of Computer Science and Technology, Peking University), Xiao Luo (Peking University), and Minghua Deng (Peking University)	
Grad Centroid Activation Mapping for Convolutional Neural Networks	184
An Efficient non-Backpropagation Method for Training Spiking Neural Networks	192
Geometric Path Enumeration for Equivalence Verification of Neural Networks Samuel Teuber (Department of Theoretical Computer Science, Karlsruhe Institute of Technology (KIT), Germany), Marko Kleine Büning (Department of Theoretical Computer Science, Karlsruhe Institute of Technology (KIT), Germany), Philipp Kern (Department of Theoretical Computer Science, Karlsruhe Institute of Technology (KIT), Germany), and Carsten Sinz (Department of Theoretical Computer Science, Karlsruhe Institute of Technology (KIT), Germany)	200
AI Foundation - 2	
Clustering to the Fewest Clusters Under Intra-Cluster Dissimilarity Constraints	209
Feature Extraction for Class Imbalance using a Convolutional Autoencoder and Data Sampling Zahra Salekshahrezaee (Florida Atlantic University), Joffrey L. Leevy (Florida Atlantic University), and Taghi M. Khoshgoftaar (Florida Atlantic University)	217
VTON-HF: High Fidelity Virtual Try-on Network via Semantic Adaptation Chenghu Du (Wuhan Textile University, China), Feng Yu (Wuhan Textile University, China; Engineering Research Center of Hubei Province for Clothing Information, China), Yadong Chen (Wuhan Textile University, China), Minghua Jiang (Wuhan Textile University, China; Engineering Research Center of Hubei Province for Clothing Information, China), Xiong Wei (Wuhan Textile University, China), Tao Peng (Wuhan Textile University, China; Engineering Research Center of Hubei Province for Clothing Information, China), and Xinrong Hu (Wuhan Textile University, China; Engineering Research Center of Hubei Province for Clothing Information, China)	. 224
Automated SAT Problem Feature Extraction using Convolutional Autoencoders Marco Dalla (University College Cork, Ireland), Andrea Visentin (University College Cork, Ireland), and Barry O'Sullivan (University College Cork, Ireland)	. 232

Linear Algebraic Computation of Propositional Horn Abduction	40
A Practical Query Selection Framework for Real-Time Bayesian Preference Elicitation	48
Unsupervised Constraint Acquisition	56
AI Planning - 2	
On the Verification of Totally-Ordered HTN Plans	63
Clustering Shift Graph Convolutional Network for Taxi Origin-Destination Demand Prediction 26 Zhilei Peng (University of Science and Technology of China, China), Guixing Wu (University of Science and Technology of China, China), and Fengliang Xia (University of Science and Technology of China, China)	68
Bansor: Improving Tensor Program Auto-Scheduling with Bandit Based Reinforcement Learning . 27 Chao Gao (Huawei Research Institute, Canada), Tong Mo (Huawei Research Institute, Canada), Taylor Zowtuk (Huawei Research Institute, Canada), Tanvir Sajed (Huawei Research Institute, Canada), Laiyuan Gong (Huawei Technologies, China), Hanxuan Chen (Huawei Technologies, China), Shangling Jui (Huawei Technologies, China), and Wei Lu (Huawei Research Institute, Canada)	73
MyGym: Modular Toolkit for Visuomotor Robotic Tasks	79
Multi-Step Preferred Elite-Guided Firefly Algorithm	84

Attn-CommNet: Coordinated Traffic Lights Control on Large-Scale Network Level
Reproducing arm Movements Based on Pose Estimation with Robot Programming by Demonstration 294 Oscar Fernandez-Ramos (Universidad Peruana de Ciencias Aplicadas (UPC), Peru), Diego Johnson-Yañez (Universidad Peruana de Ciencias Aplicadas (UPC), Peru), and Willy Ugarte (Universidad Peruana de Ciencias Aplicadas (UPC), Peru)
AI Machine Learning - 2
Machine Learning in Intangible Cultural Analytics: The Case of Greek Songs' Lyrics
Biomarker-Based Deep Learning for Personalized Nutrition
Combining Hindsight with Goal-Enhanced Prediction for Multi-Goal Reinforcement Learning 314 Rui Yang (Tsinghua University, China), Feng Luo (Tsinghua University, China), and Xiu Li (Tsinghua University, China)
Social and Spatio-Temporal Learning for Contextualized Next Points-of-Interest Prediction
A Lightweight Machine Learning Approach to Detect Depression from Speech Analysis
Learning From Other Labels: Leveraging Enhanced Mixup and Transfer Learning for Twitter Sentiment Analysis

Characterizing Learning Dynamics of Deep Neural Networks via Complex Networks	14
AI Neural Nets - 2	
POI Recommend for Deep Neural Network Based on Explicit and Implicit Feature Joint	52
CapsRec: A Capsule Graph Neural Network Model for Social Recommendation	59
Profiling Money Laundering with Neural Networks: a Case Study on Environmental Crime Detection	54
An Orthogonal Classification Layer with Kasami Sequences for Discriminative Feature Learning in Neural Networks	70
Semantic-Based Bidirectional Adversarial Neural Topic Model	76
On Outsourcing Artificial Neural Network Learning of Privacy-Sensitive Medical Data to the Cloud	81
Enhancing Neural Network Based Hybrid Learning with Empirical Wavelet Transform for Time Series Forecasting	36

AI Foundation - 3

Consensus Subspace Clustering Nathan Thom (University of Nevada, USA), Hung Nguyen (University of Nevada, USA), and Emily Hand (University of Nevada, USA)	391
Optimized Models and Symmetry Breaking for the NFA Inference Problem	396
Computing Max-SAT Refutations using SAT Oracles	404
AutoTSC: Optimization Algorithm to Automatically Solve the Time Series Classification	412
Problem	412
Use Mean Field Theory to Train a 200-Layer Vanilla GAN	420
Solving Infinite-Horizon Dec-POMDPs using Finite State Controllers Within JESP	427
A Deep Genetic Method for Keyboard Layout Optimization Keren Nivasch (Computer Science Department, Ariel University, Israel) and Amos Azaria (Computer Science Department, Ariel University, Israel)	435
Statistical Guarantees and Algorithmic Convergence Issues of Variational Boosting Biraj Subhra Guha (Department of Biostatistics and Computational Biology, University of Rochester Medical Center, USA), Anirban Bhattacharya (Department of Statistics, Texas A & M University, USA), and Debdeep Pati (Department of Statistics, Texas A & M University, USA)	442
Graph Neural Networks for Scheduling of SMT Solvers Jan Hula (University of Ostrava, Czechia), David Mojžíšek (University of Ostrava, Czechia), and Mikoláš Janota (Czech Technical University in Prague, Czechia)	447

AI Planning - 3

Predicting the Next Location for Trajectories From Stolen Vehicles José Soares da Silva Neto (Insight Data Science Lab, Federal University of Ceara, Brazil), Ticiana Linhares Coelho da Silva (Insight Data Science Lab, Federal University of Ceara, Brazil), Lívia Almada Cruz (Insight Data Science Lab, Federal University of Ceara, Brazil), Vinícius Monteiro de Lira (ISTI-CNR, Italy), José Antônio F. de Macêdo (Insight Data Science Lab, Federal University of Ceara, Brazil), Régis Pires Magalhães (Insight Data Science Lab, Federal University of Ceara, Brazil), and Lucas Peres Gaspar (Insight Data Science Lab, Federal University of Ceara, Brazil)	452
Graph Partition Convolution Neural Network for Pedestrian Trajectory Prediction	457
A Data-Driven Approach for Guiding the Occupant's Actions to Achieve Better Comfort in Buildings	463
A Robust Approach to Noise for Plan Recognition in RTS Games	469
Autonomous Electric Vehicle Routing Problem using Ant Colony Optimization with Consideration of the Battery State-of-Health Pierre Romet (CIAD, Univ. Bourgogne Franche-Comté, France), Romain Tabusse (FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, France), Franck Gechter (CIAD, Univ. Bourgogne Franche-Comté, France), El-Hassane Aglzim (ISAT-DRIVE, Univ. Bourgogne Franche-Comté, France), Samir Jemei (FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, France), David Bouquain (FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, France), and Daniela Chrenko (FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, France)	475
Adversarial Multi-Agent Path Finding is Intractable	481
Contingent Planning for Robust Multi-Agent Path Finding Michal Nekvinda (Faculty of Mathematics and Physics, Charles University, Czech Republic) and Roman Barták (Faculty of Mathematics and Physics, Charles University, Czech Republic)	487

AI Machine Learning - 3

Novelty Detection for Unsupervised Continual Learning in Image Sequences	93
earning Algorithms with Self-Play: A New Approach to the Distributed Directory Problem 50. Pankaj Khanchandani (Cloud Technology, Adobe Systems, India), Oliver Richter (Department of Electrical Engineering and Information Technology, ETH Zurich, Switzerland), Lukas Rusch (Department of Electrical Engineering and Information Technology, ETH Zurich, Switzerland), and Roger Wattenhofer (Department of Electrical Engineering and Information Technology, ETH Zurich, Switzerland))1
Evolutionary Computing Assisted Deep Reinforcement Learning for Multi-Objective Integrated Energy System Management)6
ensitivity Analysis for Deep Learning: Ranking Hyper-Parameter Influence	12
UAS and Machine Learning Integration in Waterfowl Population Surveys	17
ntelligent Machine Learning System for Predicting Customer Churn	22
AI CVPR - 1	
ew-Shot Adaptive Detection of Objects of Concern using Generative Models with Negative Setraining	28

FST-Net: Exploiting Frequency Spatial Temporal Information for Low-Quality Fake Video
Detection
A Global Discriminant Joint Training Framework for Robust Speech Recognition
A Supervisory Mask Attentional Network for Person Re-Identification in Uniform Dress Scenes
Crowdsourcing Recognized Image Objects in Mobile Devices Through Machine Learning
An Evaluation of Methods on Detecting, Recognizing and Understanding Graphics Images in Technical Documents
A Part Invariance Network for Cross-Domain Person Re-Identification
AI Foundation - 4
A Constraint-Based Approach for Enumerating Gradual Itemsets

Stochastic Euler Heavy Ball Method	590
Constraint Programming for Itemset Mining with Multiple Minimum Supports	598
Improving Integer and Constraint Programming for Graeco-Latin Squares Noah Rubin (Carleton University), Curtis Bright (Carleton University; University of Windsor), Kevin Cheung (Carleton University), and Brett Stevens (Carleton University)	604
EAD: An Efficient Anomaly Detection Algorithm for Multivariate Time Series	609
Aggregate Function Generalization to Temporal Data Jan Motl (Czech Technical University in Prague, Czechia) and Pavel Kordík (Czech Technical University in Prague, Czechia)	614
Causal Event Extraction using Iterated Dilated Convolutions with Semantic Convolutional Filters Jianqi Gao (Shanghai University, Shanghai, China), Xiangfeng Luo (Shanghai University, Shanghai, China), Hao Wang (Shanghai University, Shanghai, China), and Zijian Wang (Shanghai University, Shanghai, China)	619
Hierarchical Triplet Attention Pooling for Graph Classification Liande Bi (Department of Computer Science and Technology, Ocean University of China, China), Xin Sun (Department of Computer Science and Technology, Ocean University of China, China), Fei Zhou (Department of Computer Science and Technology, Ocean University of China, China), and Junyu Dong (Department of Computer Science and Technology, Ocean University of China, China)	624
Inferring Clauses and Formulas in Max-SAT Matthieu Py (Aix-Marseille Université, Université de Toulon, France), Mohamed Sami Cherif (Aix-Marseille Université, Université de Toulon, France), and Djamal Habet (Aix-Marseille Université, Université de Toulon, France)	632
AI Application Specific - 1	
Cross-View Gait Recognition Based on Feature Fusion Qi Hong (Wuhan University, China), Zhongyuan Wang (Wuhan University, China), Jianyu Chen (Wuhan University, China), and Baojin Huang (Wuhan University, China)	640
A Dirichlet Policy Reuse Approach for Financial Markets	647

Improving Transportation Mode Identification with Limited GPS Trajectories	5
Blur the Eyes of UAV: Effective Attacks on UAV-Based Infrastructure Inspection	L
Channel-Weighted Squeeze-and-Excitation Networks For Epileptic Seizure Detection	5
Training Electric Vehicle Charging Controllers with Imitation Learning	1
Evaluation of One-Class Algorithms for Anomaly Detection in Home Networks	2
Constrained Prediction Time Random Forests using Equivalent Trees and Genetic Programming : Application to Fall Detection Model Embedding)
AI Machine Learning - 4	
Transformer Based Multi-Output Regression Learning for Wastewater Treatment	3
Incremental Feature Learning using Constructive Neural Networks	1
Learning Heterogeneous Strategies via Graph-Based Multi-Agent Reinforcement Learning)

14
19
24
29
36
45
53
1 2

Multi-Task Scale Adaptive Ladder Network for Crowd Counting	758
PSG-GAN: Progressive Person Image Generation with Self-Guided Local Focuses	763
Causal Intervention for Object Detection Weiqing Huang (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Miao Jiang (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Min Li (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Bo Meng (Beijing Institute of Technology, China), Junxing Ren (Institute of Information Engineering, Chinese Academy of Sciences, China), Shixian Zhao (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), Ruwen Bai (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China), and Yang Yang (Institute of Information Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China)	770
AI Foundation - 5 AWD3: Dynamic Reduction of the Estimation Bias	775
Engineering Department, Bilkent University, Turkey), Baturay Saglam (Electrical and Electronics Engineering Department, Bilkent University, Turkey), Ahmet Kagan Kaya (Electrical and Electronics Engineering Department, Bilkent University, Turkey), Furkan Burak Mutlu (Electrical and Electronics Engineering Department, Bilkent University, Turkey), and Suleyman Serdar Kozat (Electrical and Electronics Engineering Department, Bilkent University, Turkey)	
Surrogate-Based Black-Box Optimization Method for Costly Molecular Properties	780
Optimization of the Diffusion Time in Graph Diffused-Wasserstein Distances: Application to Domain Adaptation	786

Explaining Black-box Classification Models with Arguments
Towards Monotonous Functions Approximation from Few Data With Gradual Generalized Modus Ponens: Application to Materials Science
On Robust Vs Fast Solving of Qualitative Constraints
AI Application Specific - 2
LURAT: a Lightweight Unsupervised Automatic Readability Assessment Toolkit for Second Language Learners
Checking Agent Intentions in Games
RMkNN and KNORA-IU: Combining Imbalanced Dynamic Selection Techniques for Credit Scoring 823
Leopoldo Melo Junior (Insightlab, Universidade Federal do Ceará, Brazil), José Antonio Macedo (Computer Science Department - Universidade Federal do Ceará, Brazil), Franco Maria Nardini (ISTI-CNR, Italy), and Chiara Renso (ISTI-CNR, Italy)
Self-supervised Variational Autoencoder for Recommender Systems 831 Jing Wang (Beijing Jiaotong University, China), Gangdu Liu (Beijing Jiaotong University, China), Jun Wu (Beijing Jiaotong University, China), Caiyan Jia (Beijing Jiaotong University, China), and Zhifei Zhang (Beijing Jiaotong University, China)
Enhanced-Memory Transformer for Coherent Paragraph Video Captioning
ExMed: An AI Tool for Experimenting Explainable AI Techniques on Medical Data Analytics 841 Marcin Kapcia (Swansea university, United Kingdom), Hassan Eshkiki (Swansea University, United Kingdom), Jamie Duell (Swansea University, United Kingdom), Xiuyi Fan (Swansea University, United Kingdom), Shangming Zhou (University of Plymouth, United Kingdom), and Benjamin Mora (Swansea University, United Kingdom)

New Insights into the Propulsion Power Prediction of Cruise Ships 8-Fred Gonsalves (IMT Atlantique, Lab-STICC, France; Chantiers de l'Atlantique), Bastien Pasdeloup (IMT Atlantique, Lab-STICC, France), Romain Billot (IMT Atlantique, Lab-STICC, France), Patrick Meyer (IMT Atlantique, Lab-STICC, France), Arnaud Jacques (Chantiers de l'Atlantique), and Matthieu Lorang (Chantiers de l'Atlantique)	46
AI Machine Learning - 5	
An Interpretable Deep Learning System for Automatically Scoring Request for Proposals	51
Adaptive Workload Orchestration in Pure Edge Computing: A Reinforcement-Learning Model 88 Zahra Safavifar (SFI Centre for Research Training in Machine Learningat at University College Dublin, Ireland), Saeedeh Ghanadbashi (dept. Computer Science, University College Dublin, Ireland), and Fatemeh Golpayegani (dept. Computer Science, University College Dublin, Ireland)	56
FEDBS: Learning on Non-IID Data in Federated Learning using Batch Normalization	61
A Deep Reinforcement Learning-Based Agent for Negotiation with Multiple Communication Channels	68
Dual Batch Size Training: An Efficient MGD Adaptive Batch Size Method	73
Analysis of COVID-19 Misinformation in Social Media using Transfer Learning	80

AI CVPR - 3

Self-Augmentation with Dual-Cycle Constraint for Unsupervised Image-to-Image Generation Gang Wang (Shanghai University of Finance and Economics, China), Haibo Shi (Shanghai University of Finance and Economics, China), and Yufei Chen (CAD Research Center, Tongji University, China)	886
Polar Loss for Event-Based Object Detection	891
Terroristic Content Detection using a Multi-Scene Classification System	896
Delving into the Scale Variance Problem in Object Detection	902
Object and Contour Detection with an Architecture-Fusion Network Keqing Jian (University of Electronic Science and Technology of China, China) and Shenglin Gui (University of Electronic Science and Technology of China, China)	910
Bidirectional Convolutional-LSTM Based Network for Lung Segmentation of Chest X-ray Images Md Shariful Alam (University of New South Wales, Australia), Dadong Wang (Data61 CSIRO, Australia), and Arcot Sowmya (University of New South Wales, Australia)	s 915
AI Natural Language - 1	
Evaluating Methodologies on Deep Understanding of Mathematical Formulas in Technical Documents Nikolaos Gkorgkolis (Center of Assistive Research Technologies (CART), Wright State University, USA) and Nikolaos Bourbakis (Center of Assistive Research Technologies (CART), Wright State University, USA)	920
A Scalable Short-Text Clustering Algorithm using Apache Spark Leonidas Akritidis (International Hellenic University, Greece), Miltiadis Alamaniotis (University of Texas at San Antonio, USA), Athanasios Fevgas (University of Thessaly, Greece), and Panayiotis Bozanis (International Hellenic University, Greece)	927

Disease Modeling with a Forest Deep Neural Network Utilizing NLP and a Virtualized
Clinical Semantic Network
Quantum-Inspired Hierarchical Attention Mechanism for Question Answering
A Simple, Concise, Query-Based Approach to News Article Summarization using Sentence Scoring
Bridging Text Space and Knowledge Space via Transference Methods
T-Mask: An Active and Accurate Dialogue State Tracking with Token Mask Prediction
Diversity-Driven Combination for Grammatical Error Correction
AI Application Specific - 3
Verum Fitness: An AI Powered Mobile Fitness Safety and Improvement Application

ntrusion Detection over Network Packets using Data Stream Classification Algorithms	985
Hybrid System for Lithium-ion Battery State-of-Charge Univariate Forecasting	991
air Quality Data Pre-Processing: A Novel Algorithm to Impute Missing Values in Univariate Time Series Lakmini Wijesekara (Western Sydney University, Australia) and Liwan Liyanage (Western Sydney University, Australia)	996
tock Market Trend Forecasting Based on Multiple Textual Features: A Deep Learning Method Zhenda Hu (Shanghai University of Finance and Economics, China), Zhaoxia Wang (Singapore Management University, Singapore), Seng-Beng Ho (Social and Cognitive Computing Department, Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore), and Ah-Hwee Tan (Singapore Management University, Singapore)	1002
uper Mario A-Star Agent Revisited David Šosvald (Faculty of Mathematics and Physics, Charles University, Czech Republic), Michal Töpfer (Faculty of Mathematics and Physics, Charles University, Czech Republic), Jan Holan (Faculty of Mathematics and Physics, Charles University, Czech Republic), Vojtech Cerný (Faculty of Mathematics and Physics, Charles University, Czech Republic), and Jakub Gemrot (Faculty of Mathematics and Physics, Charles University, Czech Republic)	1008
HSR: A Successful Application of Deep Learning Technology in Signal Retrieval	1013
volutionary Method for Two-Dimensional Associative Local Distribution Rule Mining	1018

AI KRRC - 1

KGAT-SR: Knowledge-Enhanced Graph Attention Network for Session-Based Recommendation . 1 Qianqian Zhang (Hohai University, China), Zhuoming Xu (Hohai University, China), Hanlin Liu (Hohai University, China), and Yan Tang (Hohai University, China)	.026
Leveraging Static Models for Link Prediction in Temporal Knowledge Graphs	.034
Few-Shot Classification With Intra-Class Unrelated Multi-Prototype Representation and Episode Adaptation Strategy	.042
Zero or few Shot Knowledge Graph Completions by Text Enhancement with Multi-Grained	050
Attention	.030
Fake News Detection by using Common Latent Semantics Matching Method	059
Resolving Infeasibility in Linear Programs for the Frequent Itemset Hiding Problem	.067
Code-Based Algorithm for Coalition Structure Generation	075
AI CVPR - 4	
Object Quality Guided Feature Fusion for Person Re-Identification	.083

	1088
Jinky G. Marcelo (Central Mindanao University; De La Salle University, Philippines), Gian Marco I. Te (De La Salle University, Philippines), Macario O. Cordel II (De La Salle University, Philippines), and Joel P. Ilao (De La Salle University, Philippines)	
Detection of Defect Proportion for Workpiece Surface Based on a Fusion Prediction Model Sikai Tao (Nankai University, China), Ruixun Zhang (Peking University, China), and Yumeng Li (Nankai University, China)	1093
User-Guided Image Inpatinting with Transformer	1099
Density-Net: A Density-Aware Network for 3D Object Detection	1105
0 0	
Towards Non-Ambiguous Reverse Dictionary	1113
Guowei Chen (Department of Automation, Shanghai Jiao Tong University, China) and Jianbo Su (Department of Automation, Shanghai Jiao Tong	
Guowei Chen (Department of Automation, Shanghai Jiao Tong University, China) and Jianbo Su (Department of Automation, Shanghai Jiao Tong University, China) Sarcasm Detection and Quantification in Arabic Tweets	1121
Guowei Chen (Department of Automation, Shanghai Jiao Tong University, China) and Jianbo Su (Department of Automation, Shanghai Jiao Tong University, China) Sarcasm Detection and Quantification in Arabic Tweets Bashar Talafha (Jordan University of Science and Technology, Jordan), Muhy Eddin Za'ter (Princess Sumaya University for Technology, Jordan), Samer Suleiman (Jordan University of Science and Technology, Jordan), Mahmoud Al-Ayyoub (Jordan University of Science and Technology, Jordan), and Mohammed Al-Kabi (Al-Buraimi University College, Oman) Contextual Networks and Unsupervised Ranking of Sentences Hao Zhang (University of Massachusetts Lowell, USA), You Zhou (University of Massachusetts Lowell, USA), and Jie Wang (University of	1121

Enrichment of Features for Malware-Related Sentence Classification using External Knowledge
Chau Nguyen (Japan Advanced Institute of Science and Technology, Japan), Vu Tran (The Institute of Statistical Mathematics, Japan), and Minh Le Nguyen (Japan Advanced Institute of Science and Technology, Japan)
Multi-Agent Story-Based Settlement Generation
RoGPT2: Romanian GPT2 for Text Generation
AI Decision Systems - 1
Improving Peer Assessment Accuracy by Incorporating Grading Behaviors 1162 Jia Xu (Guangxi University, China; Guangxi Key Laboratory of Multimedia Communications Network Technology, China; Guangxi Colleges and Universities Key Laboratory of Parallel and Distributed Computing, China), Jing Liu (Guangxi University, China), Pin Lv (Guangxi University, China; Guangxi Key Laboratory of Multimedia Communications Network Technology, China; Guangxi Colleges and Universities Key Laboratory of Parallel and Distributed Computing, China), and Panyuan Yang (Guangxi University, China)
An Individual-Dependent Differential Evolution with Dual Information Guidance
LRFNet: An Occlusion Robust Fusion Network for Semantic Segmentation with Light Field 1178 Jianwei Zhou (Beihang University, China), Da Yang (Beihang University, China), Zhenglong Cui (Beihang University, China), Sizhe Wang (Beihang University, China), and Hao Sheng (Beihang University, China)
Prediction-Based Fleet Relocation for Free Floating Car Sharing Services
Multi-Aspect Heterogeneous Graph Convolutional Network for Recommendation

Towards Safer Industrial Serial Networks: An Expert System Framework for Anomaly Detection. 1197 Ralf Luis de Moura (Vale S/A), Virginia N.L. Franqueira (University of Kent), and Gustavo Pessin (Instituto Tecnologico Vale)
Temporal Smoothness Framework: Analyzing and Exploring Evolutionary Transition Behavior in Dynamic Networks
AI KRRC - 2
Improving Relation Extraction by Knowledge Representation Learning
Smart Data for Goods and Vehicle Monitoring – Practical Considerations on Data Semantization
KGWE: A Knowledge-Guided Word Embedding Fine-Tuning Model Wei Kun Kong (Japan Advanced Institute of Science and Technology, Japan), Teeradaj Racharak (Japan Advanced Institute of Science and Technology, Japan), Yiming Cao (Japan Advanced Institute of Science and Technology, Japan), Cheng Peng (Japan Advanced Institute of Science and Technology, Japan), and Minh Le Nguyen (Japan Advanced Institute of Science and Technology, Japan)
A Framework for Constructing and Augmenting Knowledge Graphs using Virtual Space: Towards Analysis of Daily Activities
Utilizing External Knowledge with Multi-Granularity Attention for Review Reading Comprehension
Interpretable Credit Risk Assessment Based on Heuristic Knowledge Extraction Method

A Probabilistic Batch Oriented Proactive Workflow Management	.242
AI Uncertainty	
Stochastic Sparse Adversarial Attacks	1247
Off-Policy Correction for Deep Deterministic Policy Gradient Algorithms via Batch Prioritized Experience Replay	1255
Interactive Explainable Case-Based Reasoning for Behavior Modelling in Videogames	263
SEED: A Cross-Layer Semantic Enhanced SLU Model With Role Context Differentiated Fusion 1 Changjian Wang (School of Computer, National University of Defense Technology, P. R. China), Dongsong Zhang (School of Computer, National University of Defense Technology, P. R. China), Shezheng Song (School of Computer, National University of Defense Technology, P. R. China), Zhen Huang (School of Computer, National University of Defense Technology, P. R. China), and Yuxing Peng (School of Computer, National University of Defense Technology, P. R. China)	.271
False Negative Reduction in Video Instance Segmentation using Uncertainty Estimates	279
SAdvGAN: Multiple Information Fusion For Adversary Generation	.287
Discovering Useful Compact Sets of Sequential Rules in a Long Sequence	.295

AI Decision Systems - 2

Game-Theoretic Simulations with Cognitive Agents Nausheen Saba Shahid (Department of Computer Science, Royal Holloway University of London, UK), Dan O'Keeffe (Department of Computer Science, Royal Holloway University of London, UK), and Kostas Stathis (Department of Computer Science, Royal Holloway University of London, UK)	1300
An Enhanced R-NSGA-II For Multiple Brands Advertising Campaign Allocation Problem	1306
An Analysis of Twitter Users Opinions on Vaccines using Machine Learning Techniques	1311
SERC: Syntactic and Semantic Sequence Based Event Relation Classification	1316
Adversarial Examples Detection and Analysis with Layer-Wise Autoencoders Bartosz Wójcik (Jagiellonian University, Poland), Pawel Morawiecki (Institute of Computer Science, Polish Academy of Sciences, Poland), Marek Smieja (Jagiellonian University, Poland), Tomasz Krzyzek (Jagiellonian University, Poland), Przemyslaw Spurek (Jagiellonian University, Poland), and Jacek Tabor (Jagiellonian University, Poland)	1322
Diagnosis Detection Support Based on Time Series Similarity of Patients Physiological	400=
Parameters	1327
An Efficient Algorithm for Computing Elected Assertions in Partially Preordered Ontologies1 Sihem Belabbes (IUT de Montreuil, Université Paris 8, France) and Salem Benferhat (Centre de Recherche en Informatique de Lens, Université d'Artois & CNRS, France)	1332
AI Decision Systems - 3	
A Decision Guidance System for Optimal Infrastructure Investments	1337
KCC Method: Unknown Intrusion Detection Based on Open Set Recognition Shuyuan Xu (Shanghai Jiao Tong University, China), Linsen Li (Shanghai Jiao Tong University, China), Hangjun Yang (Shanghai Jiao Tong University, China), and Junhua Tang (Institute of Cyber Science and Technology, Shanghai Jiao Tong University, China)	1343

Clustering Users by Exploiting Activity Tracks in Recommender Systems for SME	348
AI Approaches for the Prognosis of the Survival (or Not) of Patients with Bone Metastases	353
Proactive, Correlation Based Anomaly Detection at the Edge	358
Delayed Adversarial Training with Non-Sequential Adversarial Epochs	363
Cross-Aligned and Gumbel-Refactored Autoencoders for Multi-View Anomaly Detection	368
A Genetically Evolved Measure of Credit-Risk	376
AI Decision Systems - 4	
OpenAPI Thing Descriptions for the Web of Things	384
Evaluating the Learning Outcomes of a Fuzzy-Based Intelligent Tutoring System	192

Automatically Predict Question Difficulty for Reading Comprehension Exercises	3
Revelation of Task Difficulty in AI-Aided Education	3
SemFSR: An Unsupervised Face SR with Semantic Features for Multiple Degradations	9
Automatic Drone Identification Through Rhythm-Based Features for the Internet of Drones 1417. Alisson Renan Svaigen (Federal University of Minas Gerais, Brazil), Lailla Milainny Siqueira Bine (Federal University of Minas Gerais, Brazil), Gisele Lobo Pappa (Federal University of Minas Gerais, Brazil), Linnyer Beatrys Ruiz (State University of Minas Gerais, Brazil), and Antonio Alfredo Ferreira Loureiro (Federal University of Minas Gerais, Brazil)	7
PAMELA: A Generic and Light Multi-Agent Platform	2
AI Data Mining	
The Effects of Class Label Noise on Highly-Imbalanced Big Data	7
Classification with Dynamic Data Augmentation	4
Extracting Frequent (Closed) Seasonal Gradual Patterns using Closed Itemset Mining	2
Output Thresholding for Ensemble Learners and Imbalanced Big Data	9

A Multi-Perspective Distributed Mining Framework for Scalable Search Spell Correction 1455 Yutong Li (Apple Inc, U.S.A), Hari Bommaganti (Apple Inc, U.S.A), and Himanshu Yadava (Apple Inc, U.S.A)	
DBUL: A User Identity Linkage Method Across Social Networks Based on Spatiotemporal Data 1461 Hui Xue (Institute of Information Engineering, Chinese Academy of Sciences, China), Bo Sun (National Internet Emergency Center, China), Chengxiang Si (National Internet Emergency Center, China), Wei Zhang (National Internet Emergency Center, China), and Jing Fang (National Internet Emergency Center, China)	
DisCERN:Discovering Counterfactual Explanations using Relevance Features from Neighbourhoods	
DHQN: a Stable Approach to Remove Target Network from Deep Q-Learning Network	
Geometric Invariant Representation Learning for 3D Point Cloud	

Author Index