2021 4th International Youth Scientific and Technical **Conference on Relay Protection** and Automation (RPA 2021)

Moscow, Russia 21 – 22 October 2021

IEEE Catalog Number: CFP21RPA-POD ISBN:

978-1-7281-9271-0

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP21RPA-POD

 ISBN (Print-On-Demand):
 978-1-7281-9271-0

 ISBN (Online):
 978-1-7281-9270-3

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents

Kholov N., Solieva M., Majidov A., Khafizov Sh.	Research Stability of Micro-Power Systems with a Mini- Hydroelectric Power Plant at Short-Circuits	1
Majidov A., Kholov N., Hafizov Sh.	Analysis of the Application of Microprocessor Devices for Protecting Asynchronous Motors Between Phases and Between Turns Short- Circuit	10
Chusovitin P., Vershinin A.	Emergency control system for angular stability based on PMU data	22
Tepikin Y., Gaidamakin F., Satsuk E., Dubinin D.	Turbine-Generating Unit Model Automatic Verification Tool Design Based on PMU Data	31
Koshkareva L., Klimova T.	Investigation of switching and emergency modes of operation of a 500 kV CSR to study the behavior of relay protection	42
Voloshin A., Voloshin E., Kovalenko A., Shapkin S., Sazanov V.	Algorithm for restoring the current curve when current transformers are saturated	62
Ententeev A., Voloshin A., Serov D., Usachev S., Maksimov R., Kurganov A.	Development of an automatic microgrid restoration algorithm	74
Klimova T., Guseynov A., Malyutin M., Uksekov V., Latyshov K.,	Analysis of phasor measurment units operation under various grid conditions	88
Avdonin P., Klimova T.	Tolerances of phasor measurement unit. How to take into account and decrease them	108
Karantayev V., Uksekov V., Malyutin M., Guseynov A., Latyshov K.	Application of artificial intelligence methods in information security systems of digital substations	118
Karantayev V., Uksekov V., Malyutin M., Guseynov A., Latyshov K.	Analysis of existing approaches to ensuring information security of a digital substation	146
S. Yolkin, E. Kolobrodov, T. Klimova	Direct angle calculation LAAM algorithm realisation issues	152
Kutumov Yu., Mizonov V., Shadrikova T., Shuin V.	A model of 6-10 kv power three-core cable for the research of its heating-up in normal and emergency operating modes	162

Yablokov A., Ivanov I., Tychkin A., Kulikov F., Murzin A.	Physical and mathematical modeling of impedance-based fault location utilizing synchrophasor measurements	180
Ivanov I., Umnov Ya., Dubinin D., Zhukov A.	Fault location on 500 kV overhead transmission lines through real synchrophasor data	197
Revyakin V., Pletnev S., Klimova T., Dubinin D.	Monitoring of harmonic and subharmonic vibrations during the operation of the wind farm	214
Danilov M., Rodionov A., Butin K., Popov A., Dubinin D.	Practical Results of Solving the Problem of Detecting a Source of Low-Frequency Oscillations in the Power System by the Dissipating Energy Flow Method	233
Lebedev A., Voloshin E., Malyutin M., Uksekov V., Guseynov A., Latyshov K.	Development the software complex for automated verification of the correct setup of the relay protection and automation complex on the digital substation	243
Piskunov S., Andreev P., Petrov K., Ulyanov D., Khromtsov E., Mokeev A.	Application of synchronized phasor measurement technology for automation of distribution networks	257
Irkagalieva I., Khuzyashev R., Kuzmin I.	Simulation of transient signals in the simplest equivalent circuit of a single-phase ground fault mode	266
Vyngra A., Avdeev B.	Improving the power quality of a marine automated digital substation by using an active filter	277
Voloshin A., Voloshin E., Kovalenko A., Danilov S., Degtyarev D., Sazanov V.	System of automatic change of relay protection operation parameters in distribution networks	287
Ivanov A., Ryzhkov A., Safronov B., Voloshin A., Usachev S.S	Development of a mobile network scanner of information flows with support for protocols of the IEC 61850 standard	301
Avdeev B., Vyngra A.	The Use of Solid-State Transformers as Part of Smart Grids	308