2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW 2021)

Virtual Conference 11 – 17 October 2021

Pages 1-703

IEEE Catalog Number: ISBN: CFP2191A-POD 978-1-6654-0192-0

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP2191A-POD
ISBN (Print-On-Demand):	978-1-6654-0192-0
ISBN (Online):	978-1-6654-0191-3
ISSN:	2473-9936

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) ICCVW 2021

Table of Contents

Message from the General and Program Chairs	lxvii
ICCV 2021 Organizers	lxix

Adversarial Robustness in the Real World (AROW)

On the Effect of Pruning on Adversarial Robustness	
 Trojan Signatures in DNN Weights	
Impact of Colour on Robustness of Deep Neural Networks 21 Kanjar De (Lulea University of Technology, Sweden) and Marius Pedersen 21 (Norwegian University of Science and Technology, Norway) 21	
 Evasion Attack STeganography: Turning Vulnerability of Machine Learning To Adversarial Attacks Into a Real-World Application	
Can Targeted Adversarial Examples Transfer When the Source and Target Models Have No Label Space Overlap?	
 Encouraging Intra-Class Diversity Through a Reverse Contrastive Loss for Single-Source Domain Generalization	

A Hierarchical Assessment of Adversarial Severity Guillaume Jeanneret (Universidad de los Andes), Juan C. Pérez (King Abdullah University of Science and Technology), and Pablo Arbeláez (Universidad de los Andes)	. 61
Detecting and Segmenting Adversarial Graphics Patterns From Images Xiangyu Qu (Purdue University, USA) and Stanley H. Chan (Purdue University, USA)	. 71
Enhancing Adversarial Robustness via Test-Time Transformation Ensembling Juan C. Pérez (King Abdullah University of Science and Technology; Universidad de los Andes), Motasem Alfarra (King Abdullah University of Science and Technology), Guillaume Jeanneret (Universidad de los Andes), Laura Rueda (Universidad de los Andes), Ali Thabet (King Abdullah University of Science and Technology), Bernard Ghanem (King Abdullah University of Science and Technology), and Pablo Arbeláez (Universidad de los Andes)	. 81
Optical Adversarial Attack Abhiram Gnanasambandam (Purdue University, USA), Alex M. Sherman (Purdue University, USA), and Stanley H. Chan (Purdue University, USA)	. 92
Countering Adversarial Examples: Combining Input Transformation and Noisy Training Cheng Zhang (Nanjing University of Aeronautics and Astronautics Nanjing) and Pan Gao (Nanjing University of Aeronautics and Astronautics Nanjing)	102
Patch Attack Invariance: How Sensitive Are Patch Attacks to 3D Pose? Max Lennon (The Johns Hopkins University, Maryland), Nathan Drenkow (The Johns Hopkins University, Maryland), and Phil Burlina (The Johns Hopkins University, Maryland)	112
Can Optical Trojans Assist Adversarial Perturbations?	122
Towards Category and Domain Alignment: Category-Invariant Feature Enhancement for Adversarial Domain Adaptation	132
AdvFoolGen: Creating Persistent Troubles for Deep Classifiers Yuzhen Ding (Arizona State University), Nupur Thakur (Arizona State University), and Baoxin Li (Arizona State University)	142
On Adversarial Robustness: A Neural Architecture Search Perspective Chaitanya Devaguptapu (Indian Institute of Technology, India), Devansh Agarwal (Indian Institute of Technology, India), Gaurav Mittal (Microsoft), Pulkit Gopalani (Microsoft), and Vineeth N Balasubramanian (Indian Institute of Technology, India)	152

Robust Subspace Learning and Applications in Computer Vision (RSLCV)

Relaxations for Non-Separable Cardinality/Rank Penalties
Double-Weighted Low-Rank Matrix Recovery Based on Rank Estimation
 Background/Foreground Separation: Guided Attention Based Adversarial Modeling (GAAM) Versus Robust Subspace Learning Methods
Fast Robust Tensor Principal Component Analysis via Fiber CUR Decomposition
Convolutional Auto-Encoder With Tensor-Train Factorization
Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection207Marcella Astrid (University of Science and Technology; Electronics and Telecommunications Research Institute, South Korea), Muhammad Zaigham Zaheer (University of Science and Technology; Electronics and Telecommunications Research Institute, South Korea), and Seung-Ik Lee (University of Science and Technology; Electronics and Telecommunications Research Institute, South Korea)
TransBlast: Self-Supervised Learning Using Augmented Subspace With Transformer for Background/Foreground Separation
Graph CNN for Moving Object Detection in Complex Environments From Unseen Videos

Distributed Smart Cameras (DSC)

PanopTOP: A Framework for Generating Viewpoint-Invariant Human Pose Estimation Datasets 2 Nicola Garau (University of Trento), Giulia Martinelli (University of Trento), Piotr Bródka (University of Trento), Niccolò Bisagno (University of Trento), and Nicola Conci (University of Trento)	234
Deep Quaternion Pose Proposals for 6D Object Pose Tracking	:43
Pedestrian Tracking Through Coordinated Mining of Multiple Moving Cameras	252
 An Embedded Deep Learning-Based Package for Traffic Law Enforcement	:62
Self-Attention Agreement Among Capsules	:72
Resolution Based Feature Distillation for Cross Resolution Person Re-Identification	281
Domain-Based Semi-Supervised Learning: Exploiting Label Invariance in Unlabeled Data From Distributed Cameras	<u>2</u> 90
 Where Did I See It? Object Instance Re-Identification With Attention	:98
Infrared Dataset Generation for People Detection Through Superimposition of Different Camera Sensors 3 Alessandro Avi (University of Trento), Matteo Zuccatti (University of Trento), Matteo Nardello (University of Trento), Nicola Conci (University of Trento), and Davide Brunelli (University of Trento)	307

Neural Architectures: Past, Present and Future (NeurArch)

 SCARLET-NAS: Bridging the Gap Between Stability and Scalability in Weight-Sharing Neural Architecture Search	7
CONet: Channel Optimization for Convolutional Neural Networks	5
Russian Doll Network: Learning Nested Networks for Sample-Adaptive Dynamic Inference	6
Tiled Squeeze-and-Excite: Channel Attention With Local Spatial Context 34 Niv Vosco (Hailo), Alon Shenkler (Hailo), and Mark Grobman (Hailo)	5
DDUNet: Dense Dense U-Net With Applications in Image Denoising	4
 PP-NAS: Searching for Plug-and-Play Blocks on Convolutional Neural Network	5
Single-DARTS: Towards Stable Architecture Search	3
Convolutional Filter Approximation Using Fractional Calculus	3
Graph-Based Neural Architecture Search With Operation Embeddings	3
Contextual Convolutional Neural Networks	3
 Leveraging Batch Normalization for Vision Transformers	3

AI-Enabled Medical Image Analysis and COVID-19 Diagnosis (MIA-COV19D)

Advanced 3D Deep Non-Local Embedded System for Self-Augmented X-Ray-Based COVID-19 Assessment Francesco Rundo (ADG Central R&D, Italy), Angelo Genovese (Università degli Studi di Milano, Italy), Roberto Leotta (University of Catania, IPLAB - DMI, Italy), Fabio Scotti (Università degli Studi di Milano, Italy), Vincenzo Piuri (Università degli Studi di Milano, Italy), and Sebastiano Battiato (University of Catania, IPLAB - DMI, Italy)	423
The Value of Visual Attention for COVID-19 Classification in CT Scans	433
A 3D CNN Network With BERT for Automatic COVID-19 Diagnosis From CT-Scan Images Weijun Tan (LinkSprite Technologies, USA) and Jingfeng Liu (Shenzhen Deepcam Information Technologies, China)	439
Intelligent Radiomic Analysis of Q-SPECT/CT Images To Optimize Pulmonary Embolism Diagnosis in COVID-19 Patients	446
CMC-COV19D: Contrastive Mixup Classification for COVID-19 Diagnosis Junlin Hou (Fudan University), Jilan Xu (Fudan University), Rui Feng (Fudan University), Yuejie Zhang (Fudan University), Fei Shan (Fudan University), and Weiya Shi (Fudan University)	454
Residual Dilated U-Net for the Segmentation of COVID-19 Infection From CT Images	462
Adaptive Distribution Learning With Statistical Hypothesis Testing for COVID-19 CT Scan Classification	471
Visual Interpretability Analysis of Deep CNNs Using an Adaptive Threshold Method on Diabetic Retinopathy Images	480

 Brain Midline Shift Detection and Quantification by a Cascaded Deep Network Pipeline on Non-Contrast Computed Tomography Scans
TeliNet: Classifying CT Scan Images for COVID-19 Diagnosis
COVID19 Diagnosis Using AutoML From 3D CT Scans
A Hybrid and Fast Deep Learning Framework for COVID-19 Detection via 3D Chest CT Images 508 Shuang Liang (University of Science and Technology Beijing, China), Weicun Zhang (University of Science and Technology Beijing, China), and Yu Gu (Guangdong University of Petrochemical Technology, Guangdong)
A Transformer-Based Framework for Automatic COVID19 Diagnosis in Chest CTs
A Hierarchical Classification System for the Detection of COVID-19 From Chest X-Ray Images 519 Meghna P Ayyar (Univ. Bordeaux, France), Jenny Benois-Pineau (Univ. Bordeaux, France), and Akka Zemmari (Univ. Bordeaux, France)
 Evaluating Volumetric and Slice-Based Approaches for COVID-19 Detection in Chest CTs
 MIA-COV19D: COVID-19 Detection Through 3-D Chest CT Image Analysis

Computational Challenges in Digital Pathology (CDPath)

Guided Representation Learning for the Classification of Hematopoietic Cells	545
Philipp Gräbel (Institute of Imaging and Computer Vision RWTH Åachen,	
Germany), Martina Crysandt (ŬKĂ Aachen, Germany), Barbara M.	
Klinkhammer (UKA Aachen, Germany), Peter Boor (ŬKA Aachen, Germany),	
Tim H. Brümmendorf (UKA Aachen, Germany), and Dorit Merhof (RWTH	
Aachen, Germany)	

 Simultaneous Nuclear Instance and Layer Segmentation in Oral Epithelial Dysplasia	52
Improving Self-Supervised Learning With Hardness-Aware Dynamic Curriculum Learning: An Application to Digital Pathology <i>Chetan L. Srinidhi (Sunnybrook Research Institute, Canada) and Anne L.</i> Martel (University of Toronto, Canada)	562
 Probeable DARTS With Application to Computational Pathology	72
Iterative Cross-Scanner Registration for Whole Slide Images	82
Joint Semi-Supervised and Active Learning for Segmentation of Gigapixel Pathology Images With Cost-Effective Labeling	9 1
 H&E-Adversarial Network: A Convolutional Neural Network To Learn Stain-Invariant Features Through Hematoxylin & Eosin Regression	01
An Investigation of Attention Mechanisms in Histopathology Whole-Slide-Image Analysis for Regression Objectives	511

Multi-Prototype Few-Shot Learning in Histopathology	620
 Eckstein (Friedrich-Alexander-University Erlangen-Nuremberg, Germany), Arndt Hartmann (Friedrich-Alexander-University Erlangen-Nuremberg, Germany), Volker Bruns (Fraunhofer Institute for Integrated Circuits IIS, Germany), Petr Kuritcyn (Fraunhofer Institute for Integrated Circuits IIS, Germany), Jakob Dexl (Fraunhofer Institute for Integrated Circuits IIS, Germany), David Hartmann (Fraunhofer Institute for Integrated Circuits IIS, Germany), Dominik Perrin (Fraunhofer Institute for Integrated Circuits IIS, Germany), Thomas Wittenberg (Fraunhofer Institute for Integrated Circuits IIS, Germany), and Michaela Benz (Fraunhofer Institute for Integrated Circuits IIS, Germany) 	
 A Pathology Deep Learning System Capable of Triage of Melanoma Specimens Utilizing Dermatopathologist Consensus As Ground Truth	629
Self-Supervised Representation Learning Using Visual Field Expansion on Digital Pathology Joseph Boyd (Université Paris-Saclay, France), Mykola Liashuha (Université Paris-Saclay, France), Eric Deutsch (Gustave Roussy Cancer Campus, France), Nikos Paragios (Therapanacea, France), Stergios Christodoulidis (Université Paris-Saclay, France), and Maria Vakalopoulou (Université Paris-Saclay, France)	639
A QuadTree Image Representation for Computational Pathology Robert Jewsbury (University of Warwick, UK), Abhir Bhalerao (University of Warwick, UK), and Nasir M. Rajpoot (University of Warwick, UK)	648
Deep Ordinal Focus Assessment for Whole Slide Images Tomé Albuquerque (INESC TEC FEUP), Ana Moreira (FEUP), and Jaime S. Cardoso (INESC TEC FEUP)	657
 ALBRT: Cellular Composition Prediction in Routine Histology Images	664
Robust Interactive Semantic Segmentation of Pathology Images With Minimal User Input Mostafa Jahanifar (University of Warwick, UK), Neda Zamani Tajeddin (University of Warwick, UK), Navid Alemi Koohbanani (University of Warwick, UK), and Nasir M. Rajpoot (University of Warwick, UK)	674

Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification
Simon Graham (University of Warwick, UK), Mostafa Jahanifar
(University of Warwick, UK), Ayesha Azam (University Hospitals
Coventry and Warwickshire NHS Trust, UK), Mohammed Nimir (University
Hospitals Coventry and Warwickshire NHS Trust, UK), Yee-Wah Tsang
(University Hospitals Coventry and Warwickshire NHS Trust, UK),
Katherine Dodd (University Hospitals Coventry and Warwickshire NHS
Trust, UK), Emily Hero (University Hospitals Coventry and Warwickshire
NHS Trust, UK; University Hospitals of Leicester NHS Trust, UK),
Harvir Sahota (University Hospitals Coventry and Warwickshire NHS
Trust, UK), Atisha Tank (University Hospitals Coventry and
Warwickshire NHS Trust, UK), Ksenija Benes (The Royal Wolverhampton
NHS Trust, UK), Noorul Wahab (University of Warwick, UK), Fayyaz
Minhas (University of Warwick, UK), Shan E. Ahmed Ahmed Raza
(University of Warwick, UK), Hesham El Daly (University Hospitals
Coventry and Warwickshire NHS Trust, UK), Kishore Gopalakrishnan
(University Hospitals Coventry and Warwickshire NHS Trust, UK), David
Snead (University Hospitals Coventry and Warwickshire NHS Trust, UK),
and Nasir M. Rajpoot (University of Warwick, UK)
Deal Time Call Counting in Halada Mismooren Langer
Vugno Zhu (Donohua Universitu) Zhao Chen (Donohua Universitu) Vuvin
Thung Zhu (Donghua University), Zhuo Chen (Donghua University), Tuxin Zhong (Donghua University), Oinghua Zhang (Donghua University), and
Zueng (Donghua University), Qingnua Zuang (Donghua University), ana Yuan Mana (Donghua University)

Learning To Understand Aerial Images (LUAI)

A Framework for Semi-Automatic Collection of Temporal Satellite Imagery for Analysis of Dynamic Regions Nicholas Kashani Motlagh (Ohio State University), Aswathnarayan Radhakrishnan (Ohio State University), Jim Davis (Ohio State University), and Roman Ilin (AFRL/RYAP Wright-Patterson AFB)	704
Convolutional Neural Networks Based Remote Sensing Scene Classification Under Clear and Cloudy Environments Huiming Sun (Cleveland State University), Yuewei Lin (Brookhaven National Laboratory), Qin Zou (Wuhan University), Shaoyue Song (Beijing Jiaotong University), Jianwu Fang (Chang'an University), and Hongkai Yu (Cleveland State University)	. 713
Double Head Predictor Based Few-Shot Object Detection for Aerial Imagery Stefan Wolf (Karlsruhe Institute of Technology, Germany; Fraunhofer IOSB, Germany), Jonas Meier (Fraunhofer IOSB, Germany), Lars Sommer (Fraunhofer IOSB, Germany; Fraunhofer Center for Machine Learning, Germany), and Jürgen Beyerer (Karlsruhe Institute of Technology, Germany; Fraunhofer IOSB, Germany; Fraunhofer Center for Machine Learning, Germany)	721
Self-Supervised Pretraining and Controlled Augmentation Improve Rare Wildlife Recognition in UAV Images	732

Get Better 1 Pixel PCK: Ladder Scales Correspondence Flow Networks for Remote Sensing Image Matching in Higher Resolution <i>Weitao Chen (Alibaba Group), Zhibin Wang (Alibaba Group), and Hao Li</i> <i>(Alibaba Group)</i>	742
 Progressive Unsupervised Deep Transfer Learning for Forest Mapping in Satellite Image Nouman Ahmed (National University of Sciences and Technology, Pakistan), Sudipan Saha (Technical University of Munich, Germany), Muhammad Shahzad (National University of Sciences and Technology, Pakistan; Technical University of Munich, Germany), Muhammad Moazam Fraz (National University of Sciences and Technology, Pakistan), and Xiao Xiang Zhu (Technical University of Munich, Germany; Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Germany) 	752
LUAI Challenge 2021 on Learning To Understand Aerial Images Gui-Song Xia (Wuhan University, China), Jian Ding (Wuhan University, China), Ming Qian (Wuhan University, China), Nan Xue (Wuhan University, China), Jiaming Han (Wuhan University, China), Xiang Bai (Huazhong University of Science and Technology, China), Michael Ying Yang (University of Twente, Netherlands), Shengyang Li (Chinese Academy of Sciences, Beijing, China), Serge Belongie (Cornell Tech and Cornell University, USA), Jiebo Luo (University of Rochester, USA), Mihai Datcu (German Aerospace Center (DLR), Germany; University POLITEHNICA of Bucharest, Romania), Marcello Pelillo (Ca' Foscari University of Venice, Italy), and Liangpei Zhang (Wuhan University, China)	762

Low-Power Computer Vision (LPCV)

Knowledge Distillation for Low-Power Object Detection: A Simple Technique and Its Extensions for Training Compact Models Using Unlabeled Data	769
Exploring the Power of Lightweight YOLOv4 Chien-Yao Wang (Institute of Information Science, Academia Sinica, Taiwan), Hong-Yuan Mark Liao (Institute of Information Science, Academia Sinica, Taiwan; Providence University, Taiwan), I-Hau Yeh (Elan Microelectronics Corporation, Taiwan), Yung-Yu Chuang (National Taiwan University, Taiwan), and Youn-Long Lin (National Tsing Hua University, Taiwan)	779
FOX-NAS: Fast, On-Device and Explainable Neural Architecture Search Chia-Hsiang Liu (National Yang Ming Chiao Tung University), Yu-Shin Han (National Yang Ming Chiao Tung University), Yuan-Yao Sung (National Yang Ming Chiao Tung University), Yi Lee (National Yang Ming Chiao Tung University), Hung-Yueh Chiang (The University of Texas at Austin), and Kai-Chiang Wu (National Yang Ming Chiao Tung University)	789
Post-Training Deep Neural Network Pruning via Layer-Wise Calibration Ivan Lazarevich (Intel Corporation), Alexander Kozlov (Intel Corporation), and Nikita Malinin (Intel Corporation)	798

Multi-Modal Video Reasoning and Analyzing (MMVRA)

The Multi-Modal Video Reasoning and Analyzing Competition	06
Haoran Peng (Singapore University of Technology and Design; Lancaster	
University), He Huang (Singapore University of Technology and Design),	
Li Xu (Singapore University of Technology and Design), Tianjiao Li	
(Singapore University of Technology and Design), Jun Liu (Singapore	
University of Technology and Design), Hossein Rahmani (Lancaster	
University), Qiuhong Ke (University of Melbourne), Zhicheng Guo	
(Xidian Üniversity), Cong Wu (Jiangnan University), Rongchang Li	
(Jiangnan University), Mang Ye (Wuhan University), Jiahao Wang (Xidian	
University), Jiaxu Zhang (Wuhan University), Yuanzhong Liu (Wuhan	
University), Tao He (Tsinghua University), Fuwei Zhang (Sun Yat-sen	
University), Xianbin Liu (BOE Technology Group Co., Ltd), and Tao Lin	
(Sun Yat-sen University)	

Chalearn Face Anti-Spoofing (ChaLearn_FAS)

 3D High-Fidelity Mask Face Presentation Attack Detection Challenge	14
On Improving Temporal Consistency for Online Face Liveness Detection System	24
A Dual-Stream Framework for 3D Mask Face Presentation Attack Detection	34
Single Patch Based 3D High-Fidelity Mask Face Anti-Spoofing	42
3D Mask Presentation Attack Detection via High Resolution Face Parts	46

When Graph Signal Processing Meets Computer Vision (GSP-CV)

Border-SegGCN: Improving Semantic Segmentation by Refining the Border Outline Using Graph Convolutional Network	5
 Moving Object Detection for Event-Based Vision Using Graph Spectral Clustering	5
Zero-Shot Learning via Contrastive Learning on Dual Knowledge Graphs	5
Unsupervised Learning of Geometric Sampling Invariant Representations for 3D Point Clouds 893 Haolan Chen (Peking University), Shitong Luo (Peking University), Xiang Gao (Peking University), and Wei Hu (Peking University)	3
Parameterized Pseudo-Differential Operators for Graph Convolutional Neural Networks	1

3D Object Detection From Images (3DODI)

FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection Tai Wang (the Chinese University of Hong Kong), Xinge Zhu (the Chinese University of Hong Kong), Jiangmiao Pang (the Chinese University of Hong Kong), and Dahua Lin (the Chinese University of Hong Kong)	913
MonoCInIS: Camera Independent Monocular 3D Object Detection Using Instance Segmentation Jonas Heylen (TRACE vzw), Mark De Wolf (TRACE vzw), Bruno Dawagne (TRACE vzw), Marc Proesmans (TRACE vzw; KU Leuven/ESAT-PSI), Luc Van Gool (KU Leuven/ESAT-PSI; ETHZ/CVL), Wim Abbeloos (Toyota Motor Europe), Daniel Olmeda Reino (Toyota Motor Europe), and Hazem Abdelkawy (Toyota Motor Europe)	923
Bridging the Reality Gap for Pose Estimation Networks Using Sensor-Based Domain Randomization Frederik Hagelskjær (SDU Robotics University of Southern Denmark Odense, Denmark) and Anders Glent Buch (SDU Robotics University of Southern Denmark Odense, Denmark)	935

Embedded and Real-World Computer Vision in Autonomous Driving (ERCVAD)

Boosting Instance Segmentation With Synthetic Data: A Study To Overcome the Limits of Real	
World Data Sets,	945
Florentin Poucin (École des Ponts Paristech Champs-sur-Marne, France),	
Andrea Kraus (Valeo Schalter und Sensoren GmbH, Germany), and Martin	
Simon (Valeo Schalter und Sensoren GmbH. Germany)	
,, ,	

Visual Domain Adaptation for Monocular Depth Estimation on Resource-Constrained Hardware . 954 Julia Hornauer (Ulm University, Ulm, Germany), Lazaros Nalpantidis (DTU – Technical University of Denmark, Denmark), and Vasileios Belagiannis (Ulm University, Ulm, Germany)
perf4sight: A Toolflow To Model CNN Training Performance on Edge GPUs
ProAI: An Efficient Embedded AI Hardware for Automotive Applications – A Benchmark Study 972 Sven Mantowsky (ZF Friedrichshafen AG, Artificial Intelligence Lab, Saarbrucken, Germany), Falk Heuer (ZF Friedrichshafen AG, Artificial Intelligence Lab, Saarbrucken, Germany), Saqib Bukhari (ZF Friedrichshafen AG, Artificial Intelligence Lab, Saarbrucken, Germany), Michael Keckeisen (ZF Friedrichshafen AG, Autonomous Mobility Systems, Germany), and Georg Schneider (ZF Friedrichshafen AG, Artificial Intelligence Lab, Saarbrucken, Germany)
About the Ambiguity of Data Augmentation for 3D Object Detection in Autonomous Driving 979 Matthias Reuse (Valeo Schalter und Sensoren GmbH, Germany), Martin Simon (Valeo Schalter und Sensoren GmbH, Germany), and Bernhard Sick (Universität Kassel, Germany)
Instance Segmentation in CARLA: Methodology and Analysis for Pedestrian-Oriented Synthetic Data Generation in Crowded Scenes
MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning Using an Anchor Free Approach
Semantic Concept Testing in Autonomous Driving by Extraction of Object-Level Annotations From CARLA
Deployment of Deep Neural Networks for Object Detection on Edge AI Devices With Runtime Optimization

Description of Corner Cases in Automated Driving: Goals and Challenges 1	.023
Daniel Bogdoll (FZI Research Center for Information Technology,	
Germany), Jasmin Breitenstein (Technische Universität Braunschweig,	
Germany), Florian Heidecker (University of Kassel, Germany), Maarten	
Bieshaar (University of Kassel, Germany), Bernhard Sick (University of	
Kassel, Germany), Tim Fingscheidt (Technische Universität	
Braunschweig, Germany), and J. Marius Zöllner (FZI Research Center for	
Information Technology, Germany)	
MEAL: Manifold Embedding-Based Active Learning	.029
Deepthi Sreenivasaiah (Merantix Labs GmbH, Germany), Johannes	
Otterbach (Merantix Labs GmbH, Germany), and Thomas Wollmann (Merantix	
Labs GmbH, Germany)	

Visual Inductive Priors for Data-Efficient Deep Learning (VIPriors)

LSD-C: Linearly Separable Deep Clusters Sylvestre-Alvise Rebuffi (University of Oxford), Sebastien Ehrhardt (University of Oxford), Kai Han (University of Oxford), Andrea Vedaldi (University of Oxford), and Andrew Zisserman (University of Oxford)	1038
Multimodal Continuous Visual Attention Mechanisms António Farinhas (Instituto Superior Técnico, Portugal), André F. T. Martins (Instituto Superior Técnico, Portugal; LUMLIS (Lisbon ELLIS Unit), Portugal), and Pedro M. Q. Aguiar (Instituto Superior Técnico, Portugal; LUMLIS (Lisbon ELLIS Unit), Portugal)	1047
Self-Supervised Visual Attribute Learning for Fashion Compatibility Donghyun Kim (Boston University), Kuniaki Saito (Boston University), Samarth Mishra (Boston University), Stan Sclaroff (Boston University), Kate Saenko (Boston University; MIT-IBM Watson AI Lab), and Bryan A. Plummer (Boston University)	1057
Few-Shot Learning With Online Self-Distillation Sihan Liu (Boston University) and Yue Wang (Massachusetts Institute of Technology)	1067
Tune It or Don't Use It: Benchmarking Data-Efficient Image Classification Lorenzo Brigato (Sapienza University of Rome), Björn Barz (Friedrich Schiller University Jena), Luca Iocchi (Sapienza University of Rome), and Joachim Denzler (Friedrich Schiller University Jena)	1071
Relational Prior for Multi-Object Tracking Artem Moskalev (University of Amsterdam), Ivan Sosnovik (University of Amsterdam), and Arnold Smeulders (University of Amsterdam)	1081
Predictive Coding With Topographic Variational Autoencoders T. Anderson Keller (University of Amsterdam) and Max Welling (University of Amsterdam)	1086
How To Transform Kernels for Scale-Convolutions Ivan Sosnovik (University of Amsterdam, Netherlands), Artem Moskalev (University of Amsterdam, Netherlands), and Arnold Smeulders (University of Amsterdam, Netherlands)	1092

ScatSimCLR: Self-Supervised Contrastive Learning With Pretext Task Regularization for Small-Scale Datasets
Deep Manifold Prior
Physics Based Vision Meets Deep Learning (PBDL)
Weakly-Supervised Semantic Segmentation in Cityscape via Hyperspectral Image
Multi-Level Adaptive Separable Convolution for Large-Motion Video Frame Interpolation 1127 Ruth Wijma (University of Amsterdam), Shaodi You (University of Amsterdam), and Yu Li (Applied Research Center (ARC), Tencent PCG)
Precise Forecasting of Sky Images Using Spatial Warping
 Enforcing Temporal Consistency in Video Depth Estimation
DeLiEve-Net: Deblurring Low-Light Images With Light Streaks and Local Events
Efficient Light Transport Acquisition by Coded Illumination and Robust Photometric Stereo by Dual Photography Using Deep Neural Network
Deep Single Fisheye Image Camera Calibration for Over 180-Degree Projection of Field of View
HyperMixNet: Hyperspectral Image Reconstruction With Deep Mixed Network From a Snapshot Measurement 1184 Kouhei Yorimoto (Yamaguchi University, Japan) and Xian-Hua Han (Yamaguchi University, Japan)

Generative Models for Multi-Illumination Color Constancy	194
Partha Das (University of Amsterdam, The Netherlands; 3DUniversum, The	
Netherlands), Yang Liu (3DUniversum, The Netherlands), Sezer Karaoglu	
(University of Amsterdam, The Netherlands; 3DUniversum, The	
Netherlands), and Theo Gevers (University of Amsterdam, The	
Netherlands; 3DUniversum, The Netherlands2)	

Catch UAVs That Want To Watch You: Detection and Tracking of Unmanned Aerial Vehicle in the Wild and Anti-UAV Challenge (AntiUAV)

 SiamSTA: Spatio-Temporal Attention Based Siamese Tracker for Tracking UAVs
A Unified Approach for Tracking UAVs in Infrared
 Unmanned Aerial Vehicle Visual Detection and Tracking Using Deep Neural Networks: A Performance Benchmark
Semi-Automatic Annotation for Visual Object Tracking
A Real-Time Anti-Distractor Infrared UAV Tracker With Channel Feature Refinement Module 1240 Houzhang Fang (Xidian University, China), Xiaolin Wang (Xidian University, China), Zikai Liao (Xidian University, China), Yi Chang (Pengcheng Laboratory, China), and Luxin Yan (Huazhong University of Science and Technology, China)

Computer Vision in Plant Phenotyping and Agriculture (CVPPA)

LeafMask: Towards Greater Accuracy on Leaf Segmentation	
Tip-Burn Stress Detection of Lettuce Canopy Grown in Plant Factories	
 Enlisting 3D Crop Models and GANs for More Data Efficient and Generalizable Fruit Detection	
Dynamic Color Transform for Wheat Head Detection	
 Semi-Supervised Dry Herbage Mass Estimation Using Automatic Data and Synthetic Images 1284 Paul Albert (Dublin City University; Insight Centre for Data Analytics; VistaMilk), Mohamed Saadeldin (University College Dublin; Insight Centre for Data Analytics; VistaMilk), Badri Narayanan (University College Dublin; Insight Centre for Data Analytics; VistaMilk), Brian Mac Namee (University College Dublin; Insight Centre for Data Analytics; VistaMilk), Deirdre Hennessy (Teagasc; VistaMilk), Aisling O'Connor (Teagasc; VistaMilk), Noel O'Connor (Dublin City University; Insight Centre for Data Analytics; VistaMilk), and Kevin McGuinness (Dublin City University; Insight Centre for Data Analytics; VistaMilk) 	
 Analysis of Arabidopsis Root Images — Studies on CNNs and Skeleton-Based Root Topology 1294 Birgit Möller (Martin Luther University Halle-Wittenberg, Germany), Berit Schreck (Martin Luther University Halle-Wittenberg, Germany), and Stefan Posch (Martin Luther University Halle-Wittenberg, Germany) 	
Machine Learning Meets Distinctness in Variety Testing	

From RGB to NIR: Predicting of Near Infrared Reflectance From Visible Spectrum Aerial
Images of Crops 1312 Masoomeh Aslahishahri (Univ. Saskatchewan), Kevin G. Stanley (Univ. Saskatchewan), Hema Duddu (Univ. Saskatchewan), Steve Shirtliffe (Univ. Saskatchewan), Hema Duddu (Univ. Saskatchewan), Steve Shirtliffe (Univ. Saskatchewan), Sally Vail (Agriculture and Agri-Food Canada), Kirstin Bett (Univ. Saskatchewan), Curtis Pozniak (Univ. Saskatchewan), and Ian Stavness (Univ. Saskatchewan)
Identification and Measurement of Individual Roots in Minirhizotron Images of Dense Root Systems 1323 Alexander Gillert (Fraunhofer Institute for Computer Graphics Research IGD, Rostock), Bo Peters (Greifswald University), Uwe Freiherr von Lukas (Fraunhofer Institute for Computer Graphics Research IGD, Rostock; University of Rostock), and Jürgen Kreyling (Greifswald University)
 WheatNet-Lite: A Novel Light Weight Network for Wheat Head Detection
A Semi-Self-Supervised Learning Approach for Wheat Head Detection Using Extremely Small Number of Labeled Samples
Classification and Visualization of Genotype × Phenotype Interactions in Biomass Sorghum 1352 <i>Abby Stylianou (Saint Louis University), Robert Pless (George</i> <i>Washington University), Nadia Shakoor (Donald Danforth Plant Science</i> <i>Center), and Todd Mockler (Donald Danforth Plant Science Center)</i>
 Visualizing Feature Maps for Model Selection in Convolutional Neural Networks
Predicting Protein Content in Grain Using Hyperspectral Deep Learning
Leaf Area Estimation by Semantic Segmentation of Point Cloud of Tomato Plants

 Field-Based Plot Extraction Using UAV RGB Images
Multi-Domain Few-Shot Learning and Dataset for Agricultural Applications
 What Does TERRA-REF's High Resolution, Multi Sensor Plant Sensing Public Domain Data Offer the Computer Vision Community?

Differentiable 3D Vision and Graphics (Diff3D)

DeepDraper: Fast and Accurate 3D Garment Draping Over a 3D Human Body Lokender Tiwari (TCS Research, India) and Brojeshwar Bhowmick (TCS Research, India)	1416
SSR: Semi-Supervised Soft Rasterizer for Single-View 2D to 3D Reconstruction	1427
Issam Laradji (McGill University, Element AI), Pau Rodríguez (Element	
AI), David Vazquez (Element AI), and Derek Nowrouzezahrai (McGill	
University)	

Face Bio-Metrics Under COVID-Masked Face Recognition (MFR)

Masked Face Recognition Challenge: The InsightFace Track Report Jiankang Deng (Imperial College London), Jia Guo (InsightFace), Xiang An (InsightFace), Zheng Zhu (Tsinghua University), and Stefanos Zafeiriou (Imperial College London)	. 1437
Partial FC: Training 10 Million Identities on a Single Machine	.1445
MaskOut: A Data Augmentation Method for Masked Face Recognition Weiqiu Wang (School of Artificial Intelligence), Zhicheng Zhao (School of Artificial Intelligence; Beijing University of Posts and Telecommunications, China), Hongyuan Zhang (School of Artificial Intelligence), Zhaohui Wang (School of Artificial Intelligence), and Fei Su (School of Artificial IntelligenceBeijing University of Posts and Telecommunications, China)	. 1450

 Mask Aware Network for Masked Face Recognition in the Wild
Improving Representation Consistency With Pairwise Loss for Masked Face Recognition
ResSaNet: A Hybrid Backbone of Residual Block and Self-Attention Module for Masked Face Recognition
Rectifying the Data Bias in Knowledge Distillation
Masked Face Recognition Datasets and Validation
Towards Mask-Robust Face Recognition1492Tao Feng (Alibaba Group), Liangpeng Xu (Alibaba Group), Hangjie Yuan(Zhejiang University), Yongfei Zhao (Alibaba Group), Mingqian Tang(Alibaba Group), and Mang Wang (Alibaba Group)
 Balanced Masked and Standard Face Recognition
Explainable Face Recognition Based on Accurate Facial Compositions
An Efficient Network Design for Face Video Super-Resolution

Revisting Quantization Error in Face Alignment	1521
Xing Lan (Institute of Automation, Chinese Academy of Sciences;	
University of Chinese Academy of Sciences), Qinghao Hu (Institute of	
Automation, Chinese Academy of Sciences), and Jian Cheng (Institute of	
Automation, Chinese Academy of Sciences; University of Chinese Academy	
of Sciences)	
Boosting Fairness for Masked Face Recognition	1531
Boosting Fairness for Masked Face Recognition Jun Yu (University of Science and Technology of China, China), Xinlong	1531
Boosting Fairness for Masked Face Recognition Jun Yu (University of Science and Technology of China, China), Xinlong Hao (University of Science and Technology of China, China), Zeyu Cui	1531
Boosting Fairness for Masked Face Recognition Jun Yu (University of Science and Technology of China, China), Xinlong Hao (University of Science and Technology of China, China), Zeyu Cui (University of Science and Technology of China, China), Peng He	1531
Boosting Fairness for Masked Face Recognition Jun Yu (University of Science and Technology of China, China), Xinlong Hao (University of Science and Technology of China, China), Zeyu Cui (University of Science and Technology of China, China), Peng He (University of Science and Technology of China, China), and Tongliang	1531

Interactive Labeling and Data Augmentation for Vision (ILDAV)

Nuisance-Label Supervision: Robustness Improvement by Free Labels Xinyue Wei (University of California San Diego), Weichao Qiu (Johns Hopkins University), Yi Zhang (Johns Hopkins University), Zihao Xiao (Johns Hopkins University), and Alan Yuille (Johns Hopkins University)	1541
EdgeFlow: Achieving Practical Interactive Segmentation With Edge-Guided Flow Yuying Hao (Baidu, Inc.), Yi Liu (Baidu, Inc.), Zewu Wu (Baidu, Inc.), Lin Han (NYU), Yizhou Chen (CQJTU), Guowei Chen (Baidu, Inc.), Lutao Chu (Baidu, Inc.), Shiyu Tang (Baidu, Inc.), Zhiliang Yu (Baidu, Inc.), Zeyu Chen (Baidu, Inc.), and Baohua Lai (Baidu, Inc.)	1551
Data Augmentation for Scene Text Recognition Rowel Atienza (University of the Philippines)	1561
Multi-Domain Conditional Image Translation: Translating Driving Datasets From Clear-Weather to Adverse Conditions Vishal Vinod (Indian Institute of Science Bangalore, India), K. Ram Prabhakar (Indian Institute of Science Bangalore, India), R. Venkatesh Babu (Indian Institute of Science Bangalore, India), and Anirban Chakraborty (Indian Institute of Science Bangalore, India)	1571
Using Synthetic Data Generation To Probe Multi-View Stereo Networks Pranav Acharya (University of California Santa Barbara, USA), Daniel Lohn (University of California Santa Barbara, USA), Vivian Ross (University of California Santa Barbara, USA), Maya Ha (University of California Santa Barbara, USA), Alexander Rich (University of California Santa Barbara, USA), Ehsan Sayyad (University of California Santa Barbara, USA), and Tobias Höllerer (University of California Santa Barbara, USA)	1583
Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Shuhao Qiu (Beijing University of Posts and Telecommunications, China), Chuang Zhu (Beijing University of Posts and Telecommunications, China), and Wenli Zhou (Beijing University of Posts and Telecommunications, China)	1592

Localizing Human Keypoints Beyond the Bounding Box	2
Learning to Localise and Count With Incomplete Dot-Annotations	2
Class-Agnostic Segmentation Loss and Its Application to Salient Object Detection and Segmentation	1
 Reducing Label Effort: Self-Supervised Meets Active Learning	1
Self-Improving Classification Performance Through GAN Distillation)
Interactive Labeling for Human Pose Estimation in Surveillance Videos	€
Object-Based Augmentation for Building Semantic Segmentation: Ventura and Santa Rosa Case 1659 Study 1659 Svetlana Illarionova (Skolkovo Institute of Science and Technology, 1659 Russia), Sergey Nesteruk (Skolkovo Institute of Science and 1659 Technology, Russia), Dmitrii Shadrin (Skolkovo Institute of Science 1659 and Technology, Russia), Vladimir Ignatiev (Skolkovo Institute of 1659 Science and Technology, Russia), Mariia Pukalchik (Skolkovo Institute of 1659 of Science and Technology, Russia), and Ivan Oseledets (Skolkovo Institute 1659 of Science and Technology, Russia), and Ivan Oseledets (Skolkovo Institute of Science and Technology, Russia) 1659	€
Bounding Box Dataset Augmentation for Long-Range Object Distance Estimation	€

 Weakly-Supervised Semantic Segmentation by Learning Label Uncertainty
All You Need Are a Few Pixels: Semantic Segmentation With PixelPick
InAugment: Improving Classifiers via Internal Augmentation

Assistive Computer Vision and Robotics (ACVR)

Virtual Touch: Computer Vision Augmented Touch-Free Scene Exploration for the Blind or Visually Impaired Xixuan Julie Liu (New York University Abu Dhabi, UAE) and Yi Fang (New York University Abu Dhabi, UAE)	1708
Audi-Exchange: AI-Guided Hand-Based Actions To Assist Human-Human Interactions for the Blind and the Visually Impaired Daohan Lu (NYU Multimedia and Visual Computing Lab, New York University, USA) and Yi Fang (NYU Multimedia and Visual Computing Lab, New York University, USA, New York University Abu Dhabi, UAE)	1718
Efficient Search in a Panoramic Image Database for Long-Term Visual Localization Semih Orhan (Izmir Institute of Technology) and Yalin Bastanlar (Izmir Institute of Technology)	1727
Exploiting Egocentric Vision on Shopping Cart for Out-of-Stock Detection in Retail Environments	1735
Optical Braille Recognition Using Object Detection Neural Network	1741
FrankMocap: A Monocular 3D Whole-Body Pose Estimation System via Regression and Integration	1749
 Trans4Trans: Efficient Transformer for Transparent Object Segmentation To Help Visually Impaired People Navigate in the Real World	1760

Deep Embeddings-Based Place Recognition Robust to Motion Blur
 HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation With a Wearable Solid-State LiDAR Sensor
ToFNest: Efficient Normal Estimation for Time-of-Flight Depth Cameras1791Szilárd Molnár (Faculty of Automation and Computer Science, Technical1791University of Cluj-Napoca, Romania), Benjamin Kelényi (Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Romania), and Levente Tamás (Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Romania)
ORB-SLAM With Near-Infrared Images and Optical Flow Data

Advances in Image Manipulation (AIM)

High Perceptual Quality Image Denoising With a Posterior Sampling CGAN
Unsupervised Generative Adversarial Networks With Cross-Model Weight Transfer Mechanism for Image-to-Image Translation
Rethinking Content and Style: Exploring Bias for Unsupervised Disentanglement
 SwinIR: Image Restoration Using Swin Transformer
Test-Time Adaptation for Super-Resolution: You Only Need to Overfit on a Few More Images 1845 Mohammad Saeed Rad (Signal Processing Lab (LTS5), EPFL, Switzerland), Thomas Yu (Signal Processing Lab (LTS5), EPFL, Switzerland), Behzad Bozorgtabar (Signal Processing Lab (LTS5), EPFL, Switzerland), and Jean-Philippe Thiran (Signal Processing Lab (LTS5), EPFL, Switzerland)

 Generalized Real-World Super-Resolution Through Adversarial Robustness	
 Stochastic Image Denoising by Sampling From the Posterior Distribution	
 Reducing Noise Pixels and Metric Bias in Semantic Inpainting on Segmentation Map	
Distilling Reflection Dynamics for Single-Image Reflection Removal	
SDWNet: A Straight Dilated Network With Wavelet Transformation for Image Deblurring 1895 Wenbin Zou (Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, China), Mingchao Jiang (JOYY AI GROUP, China), Yunchen Zhang (China Design Group Co. Ltd., China), Liang Chen (Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, China), Zhiyong Lu (JOYY AI GROUP, China), and Yi Wu (Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, China)	
Real-ESRGAN: Training Real-World Blind Super-Resolution With Pure Synthetic Data	
Manipulating Image Style Transformation via Latent-Space SVM	

SMILE: Semantically-Guided Multi-Attribute Image and Layout Editing
Contrastive Feature Loss for Image Prediction
Efficient Wavelet Boost Learning-Based Multi-Stage Progressive Refinement Network for Underwater Image Enhancement
Saliency-Guided Transformer Network Combined With Local Embedding for No-Reference Image Quality Assessment
Improving Key Human Features for Pose Transfer1963Victor-Andrei Ivan (Arnia Software, Romania), Ionut Mistreanu (Arnia1963Software, Romania), Andrei Leica (Arnia Software, Romania), Sung-Jun1963Yoon (LG Electronics, Republic of Korea), Manri Cheon (LG Electronics, Republic of Korea), Junwoo Lee (LG Electronics, Republic of Korea), and Jinsoo Oh (LG Electronics, Republic of Korea)
DeepFake MNIST+: A DeepFake Facial Animation Dataset
Simple and Efficient Unpaired Real-World Super-Resolution Using Image Statistics
Sparse to Dense Motion Transfer for Face Image Animation1991Ruiqi Zhao (Institute of Deep Learning, Baidu Research, China,1991National Engineering Laboratory for Deep Learning Technology and1991Application, China), Tianyi Wu (Institute of Deep Learning, Baidu1991Research, China, National Engineering Laboratory for Deep Learning1991Technology and Application, China), and Guodong Guo (Institute of Deep1991Learning, Baidu Research, China, National Engineering Laboratory for1991Deep Learning Technology and Application, China)1991
Graph2Pix: A Graph-Based Image to Image Translation Framework
Underwater Image Color Correction Using Ensemble Colorization Network

A System for Fusing Color and Near-Infrared Images in Radiance Domain	2021
Kim C Ng (OPPO US Research Center), Jinglin Shen (OPPO US Research	
Center), and Chiu Man Ho (OPPO US Research Center)	

Structural and Compositional Learning on 3D Data (StruCo3D)

3D Scene Angles Using UL Decomposition of Planar Homography Pinak Paliwal (14D Systems Inc., USA) and Vikas Paliwal (UC Berkeley, USA)	2031
MRGAN: Multi-Rooted 3D Shape Representation Learning With Unsupervised Part Disentanglement Rinon Gal (Tel-Aviv University), Amit Bermano (Tel-Aviv University), Hao Zhang (Simon Fraser University), and Daniel Cohen-Or (Tel-Aviv	2039
University) ABD-Net: Attention Based Decomposition Network for 3D Point Cloud Decomposition Siddharth Katageri (Center of Excellence in Visual Intelligence (CEVI), KLE Technological University, India), Shashidhar V Kudari	2049
(Center of Excellence in Visual Intelligence (CEVI), KLE Technological University, India), Akshaykumar Gunari (Center of Excellence in Visual Intelligence (CEVI), KLE Technological University, India), Ramesh Ashok Tabib (Center of Excellence in Visual Intelligence (CEVI), KLE	
Technological University, India), and Uma Mudenagudi (Center of Excellence in Visual Intelligence (CEVI), KLE Technological University, India)	

Simulation Technology for Embodied AI (SEAI)

SPACE: A Simulator for Physical Interactions and Causal Learning in 3D Environments	2058
Jiafei Duan (Nanyang Technological University, Singapore), Samson Yu	
(Singapore University of Technology and Design, Singapore), and	
Cheston Tan (Agency for Science, Technology and Research (A*STAR),	
Singapore)	

Deep Learning for Geometric Computing (DLGC)

Learning Laplacians in Chebyshev Graph Convolutional Networks
Investigating Transformers in the Decomposition of Polygonal Shapes As Point Collections 2076 Andrea Alfieri (Computer Vision Lab, Delft University of Technology, the Netherlands), Yancong Lin (Computer Vision Lab, Delft University of Technology, the Netherlands), and Jan C. van Gemert (Computer Vision Lab, Delft University of Technology, the Netherlands)
Evaluation of Latent Space Learning With Procedurally-Generated Datasets of Shapes 2086

Sharjeel Ali (Carleton University, Canada) and Oliver van Kaick (Carleton University, Canada)

Towards Efficient Point Cloud Graph Neural Networks Through Architectural Simplification 2095 Shyam A. Tailor (University of Cambridge), René de Jong (Arm ML Research Lab), Tiago Azevedo (Arm ML Research Lab), Matthew Mattina (Arm ML Research Lab), and Partha Maji (Arm ML Research Lab)
U-Net Based Skeletonization and Bag of Tricks
3D Shapes Local Geometry Codes Learning With SDF
PatchAugment: Local Neighborhood Augmentation in Point Cloud Classification
DISCO – U-Net Based Autoencoder Architecture With Dual Input Streams for Skeleton Image Drawing
Distance and Edge Transform for Skeleton Extraction
SkeletonNetV2: A Dense Channel Attention Blocks for Skeleton Extraction

Understanding Social Behavior in Dyadic and Small Group Interactions (DYAD)

Multiple Instance Triplet Loss for Weakly Supervised Multi-Label Action Localisation of Interacting Persons	 Temporal Cues From Socially Unacceptable Trajectories for Anomaly Detection	2150
Soman Biszuge (1) Inizersity of Bonn, Cormany) and Jürgen Call (1) Inizersity	Multiple Instance Triplet Loss for Weakly Supervised Multi-Label Action Localisation of	0150
	Some Bismas (Unimercity of Bonn, Cermany) and Lürgen Call (Unimercity	139

Deep Multi-Task Learning in Computer Vision (DeepMTL)

Concurrent Discrimination and Alignment for Self-Supervised Feature Learning
Multi-Modal RGB-D Scene Recognition Across Domains2199Andrea Ferreri (Politecnico di Torino), Silvia Bucci (Politecnico di Torino, Italian Institute of Technology, Italy), and Tatiana Tommasi (Politecnico di Torino, Italian Institute of Technology, Italy)
In Defense of the Learning Without Forgetting for Task Incremental Learning
MILA: Multi-Task Learning From Videos via Efficient Inter-Frame Attention
ConvNets vs. Transformers: Whose Visual Representations Are More Transferable?
UniNet: A Unified Scene Understanding Network and Exploring Multi-Task RelationshipsThrough the Lens of Adversarial AttacksNaresh Kumar Gurulingan (Advanced Research Lab, NavInfo Europe,Eindhoven, The Netherlands), Elahe Arani (Advanced Research Lab,NavInfo Europe, Eindhoven, The Netherlands), and Bahram Zonooz(Advanced Research Lab, NavInfo Europe, Eindhoven, The Netherlands)

Audio-Visual Transformer Based Crowd Counting	249
Usman Sajid (University of Kansas, USA), Xiangyu Chen (University of	
Kansas, USA), Hasan Sajid (NUST, Pakistan), Taejoon Kim (University of	
Kansas, USA), and Guanghui Wang (Ryerson University, Canada)	

Human Trajectory and Pose Dynamics Forecasting in the Wild (SoMoF)

Simple Baseline for Single Human Motion Forecasting
 SCAT: Stride Consistency With Auto-Regressive Regressor and Transformer for Hand Pose Estimation
Pose Transformers (POTR): Human Motion Prediction With Non-Autoregressive Transformers 2276 Angel Martínez-González (Ecole Polytechnique Federal de Lausanne, Switzerland, Idiap Research Institute, Switzerland), Michael Villamizar (Idiap Research Institute, Switzerland), and Jean-Marc Odobez (Ecole Polytechnique Federal de Lausanne, Switzerland, Idiap Research Institute, Switzerland)
 STIRNet: A Spatial-Temporal Interaction-Aware Recursive Network for Human Trajectory Prediction
Learning Decoupled Representations for Human Pose Forecasting
Multi-Input Fusion for Practical Pedestrian Intention Prediction

Video Retrieval Methods and Their Limits (ViRaL)

What Matters for Ad-Hoc Video Search? A Large-Scale Evaluation on TRECVID23	317
Aozhu Chen (AIMC Lab, Renmin University of China), Fan Hu (AIMC Lab,	
Renmin University of China), Zihan Wang (AIMC Lab, Renmin University	
of China), Fangming Zhou (AIMC Lab, Renmin University of China), and	
Xirong Li (AIMC Lab, Renmin University of China, Key Lab of Data	
Engineering and Knowledge Engineering, Renmin University of China)	
Instance Search via Fusing Hierarchical Multi-Level Retrieval and Human-Object Interaction	
Detection	323
Wenhao Yang (Beijing University of Posts and Telecommunications,	
China), Yinan Song (Beijing University of Posts and	
Telecommunications, China), Zhicheng Zhao (Beijing University of Posts	
and Telecommunications, China, Beijing Key Laboratory of Network	
System and Network Culture, China), and Fei Su (Beijing University of	
Posts and Telecommunications, China, Beijing Key Laboratory of Network	
System and Network Culture, China)	

Large-Scale Fine-Grained Food AnalysIs (LFFAI)

Fine-Grain Prediction of Strawberry Freshness Using Subsurface Scattering Jeremy Klotz (Carnegie Mellon University, USA), Vijay Rengarajan (Carnegie Mellon University, USA), and Aswin C. Sankaranarayanan (Carnegie Mellon University, USA)	2328
Online Continual Learning for Visual Food Classification Jiangpeng He (Purdue University, USA) and Fengqing Zhu (Purdue University, USA)	2337

More Exploration, Less Exploitation (MELEX)

MGGAN: Solving Mode Collapse Using Manifold-Guided Training Duhyeon Bang (SK Telecom, South Korea) and Hyunjung Shim (Yonsei University, South Korea)	2347
Analyzing and Mitigating JPEG Compression Defects in Deep Learning Max Ehrlich (University of Maryland), Larry Davis (University of Maryland), Ser-Nam Lim (Facebook AI), and Abhinav Shrivastava (University of Maryland)	2357
Addressing Target Shift in Zero-Shot Learning Using Grouped Adversarial Learning Saneem A. Chemmengath (IBM Research), Soumava Paul (Indian Institute of Technology, Kharagpur), Samarth Bharadwaj (IBM Research), Suranjana Samanta (IBM Research), and Karthik Sankaranarayanan (IBM Research)	2368

Remote Physiological Signal Sensing (RePSS)

 MANet: A Motion-Driven Attention Network for Detecting the Pulse From a Facial Video With Drastic Motions	35
of USIC, China), and Alexander Wong (University of Waterloo, Canada)	
 Weakly Supervised rPPG Estimation for Respiratory Rate Estimation	1
Time Lab's Approach to the Challenge on Computer Vision for Remote Physiological	
Yuhang Dong (Shandong University, China), Gongping Yang (Shandong University, China), and Yilong Yin (Shandong University, China)	18
 The 2nd Challenge on Remote Physiological Signal Sensing (RePSS))4

Sketching for Human Expressivity (SHE)

SketchyDepth: From Scene Sketches to RGB-D Images Gianluca Berardi (University of Bologna, Italy), Samuele Salti (University of Bologna, Italy), and Luigi Di Stefano (University of Bologna, Italy)	2414
 Scene Designer: A Unified Model for Scene Search and Synthesis From Sketch	2424
Supporting Reference Imagery for Digital Drawing	2434

SketchBird: Learning To Generate Bird Sketches From Text	443
Shaozu Yuan (JD AI, China), Aijun Dai (HKUST, Hong Kong), Zhiling Yan	
(Sun Yat-sen University, China), Zehua Guo (UC San Diego, USA), Ruixue	
Liu (JD AI, China), and Meng Chen (JD AI, China)	

Traditional Computer Vision in the Age of Deep Learning (TradiCV)

A Robust End-to-End Method for Parametric Curve Tracing via Soft Cosine-Similarity-Based Objective Function	
A Technical Survey and Evaluation of Traditional Point Cloud Clustering Methods for LiDAR Panoptic Segmentation	
Finite Aperture Stereo: 3D Reconstruction of Macro-Scale Scenes	
Robust Face Frontalization for Visual Speech Recognition	
Object Detection in Cluttered Environments With Sparse Keypoint Selection	
Effect of Parameter Optimization on Classical and Learning-Based Image Matching Methods 2506 Ufuk Efe (Middle East Technical University, Turkey), Kutalmis Gokalp Ince (Middle East Technical University, Turkey), and A. Aydin Alatan (Middle East Technical University, Turkey)	
Building 3D Morphable Models From a Single Scan	
CAFT: Class Aware Frequency Transform for Reducing Domain Gap	
Adapting Deep Neural Networks for Pedestrian-Detection to Low-Light Conditions Without Re-Training	

Towards Realistic Symmetry-Based Completion of Previously Unseen Point Clouds
Taras Rumezhak (The Machine Learning Lab at Ukrainian Catholic University; SoftServe Inc.), Oles Dobosevych (The Machine Learning Lab at Ukrainian Catholic University), Rostyslav Hryniv (The Machine Learning Lab at Ukrainian Catholic University), Vladyslav Selotkin (SoftServe Inc.), Volodymyr Karpiv (SoftServe Inc.), and Mykola Maksymenko (SoftServe Inc.)
A Closed Form Solution for Viewing Graph Construction in Uncalibrated Vision
DC-VINS: Dynamic Camera Visual Inertial Navigation System With Online Calibration
 Absolute and Relative Pose Estimation in Refractive Multi View

Computer Vision in Human-Robot Collaborative Factories of the Future (CVinHRC)

Markerless Visual Tracking of a Container Crane Spreader
Multi-Modal Variational Faster R-CNN for Improved Visual Object Detection in Manufacturing 2587 Panagiotis Mouzenidis (Centre for Research and Technology Hellas (CERTH), Greece), Antonios Louros (Centre for Research and Technology Hellas (CERTH), Greece), Dimitrios Konstantinidis (Centre for Research and Technology Hellas (CERTH), Greece), Kosmas Dimitropoulos (Centre for Research and Technology Hellas (CERTH), Greece), Petros Daras (Centre for Research and Technology Hellas (CERTH), Greece), and Theofilos Mastos (Kleemann Hellas SA, Greece)
An Anomaly Detection System via Moving Surveillance Robots With Human Collaboration 2595 Muhammad Zaigham Zaheer (University of Science and Technology, South Korea; Electronics and Telecommunications Research Institute, South Korea), Arif Mahmood (Information Technology University, Pakistan), M. Haris Khan (Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi), Marcella Astrid (University of Science and Technology, South Korea; Electronics and Telecommunications Research Institute, South Korea), and Seung-Ik Lee (University of Science and Technology, South Korea; Electronics and Telecommunications Research Institute, South Korea; Electronics and Telecommunications Research Institute, South Korea)

3D Semantic Label Transfer in Human-Robot Collaboration	2602
Cloth Mechanical Parameter Estimation and Simulation for Optimized Robotic Manipulation 2 N. E. Anatoliotakis (University of Patras), P. Koustoumpardis (University of Patras), and K. Moustakas (University of Patras)	2612
InstancePose: Fast 6DoF Pose Estimation for Multiple Objects From a Single RGB Image	2621

(National Chin-Yi University of Technology)

Crossmodal Social Animation (XSAnim)

Localize, Group, and Select: Boosting Text-VQA by Scene Text Modeling	. 2631
Xiaopeng Lu (Carnegie Mellon University, USA), Zhen Fan (Carnegie	
Mellon Üniversity, ÜSA), Yansen Wang (Carnegie Mellon University,	
USA), Jean Oh (Čarnegie Mellon University, UŠA), and Carolyn P. Rosé	
(Carnegie Mellon University, USA)	
SignPose: Sign Language Animation Through 3D Pose Lifting	. 2640
Shyam Krishna (IIIT Bangalore, Bangalore), Vijay Vignesh P (IIIT	
Bangalore, Bangalore), and Dinesh Babu J (IIIT Bangalore, Bangalore)	

Video Scene Parsing in the Wild (VSPW)

Semantic Segmentation With Multi Scale Spatial Attention for Self Driving Cars	650
LiteEdge: Lightweight Semantic Edge Detection Network	557
A Unified Efficient Pyramid Transformer for Semantic Segmentation	567

Visual Object Tracking (VOT)

 Learning Spatio-Appearance Memory Network for High-Performance Visual Tracking
Learning Tracking Representations via Dual-Branch Fully Transformer Networks
Is First Person Vision Challenging for Object Tracking?

Matej Kristan (University of Ljubljana, Slovenia), Jiří Matas (Czech Technical University, Czech Republic), Aleš Leonardis (University of Birmingham, United Kingdom), Michael Felsberg (Linköping University, Sweden), Roman Pflugfelder (Austrian Institute of Technology, Austria; TU Wien, Austria), Joni-Kristian Kämäräinen (Tampere University, Finland), Hyung Jin Chang (University of Birmingham, United Kingdom), Martin Danelljan (ETH Zurich, Switzerland), Luka Čehovin Zajc (University of Liubliana, Slovenia), Alan Lukežič (University of Ljubljana, Slovenia), Ondrej Drbohlav (Czech Technical University, Czech Republic), Jani Käpylä (Tampere University, Finland), Gustav Häger (Linköping University, Sweden), Song Yan (Tampere University, Finland), Jinyu Yang (University of Birmingham, United Kingdom), Zhongqun Zhang (University of Birmingham, United Kingdom), Gustavo Fernández (Austrian Institute of Technology, Austria), Mohamed Abdelpakey (University of British Columbia, Canada), Goutam Bhat (ETH Zurich, Switzerland), Llukman Cerkezi (Istanbul Technical University, Turkey), Hakan Cevikalp (Eskisehir Osmangazi University, Turkey), Shengyong Chen (Tianjin University of Technology, China), Xin Chen (Dalian University of Technology, China), Miao Cheng (Zhejiang Dahua Technology CO, China), Ziyi Cheng (Kyushu University, Japan), Yu-Chen Chiu (Tamkang University, Taiwan), Ozgun Cirakman (Istanbul Technical University, Turkey), Yutao Cui (Nanjing University, China), Kenan Dai (Dalian University of Technology, China), Mohana Murali Dasari (Indian Institute of Technology Tirupati, India), Qili Deng (ByteDance, China), Xingping Dong (Inception Institute of Artificial Intelligence, China), Daniel K. Du (ByteDance, China), Matteo Dunnhofer (University of Udine, Italy), Zhen-Hua Feng (University of Surrey, United Kingdom), Zhiyong Feng (Tianjin University, China), Zhihong Fu (Beihang University, China), Shiming Ge (University of Chinese Academy of Science, China), Rama Krishna Gorthi (Indian Institute of Technology Tirupati, India), Yuzhang Gu (SIMIT, China), Bilge Gunsel (Istanbul Technical University, Turkey), Qing Guo (Nanyang Technological University, Singapore), Filiz Gurkan (Istanbul Technical University, Turkey), Wencheng Han (Beijing Institute of Technology, China), Yanyan Huang (Fuzhou University, China), Felix Järemo Lawin (Linköping University, Sweden), Shang-Jhih Jhang (Tamkang University, Taiwan), Rongrong Ji (Xiamen University, China), Cheng Jiang (Nanjing University, China), Yingjie Jiang (Jiangnan University, China), Felix Juefei-Xu (Alibaba Group, USA), Yin Jun (Zhejiang Dahua Technology CO, China), Xiao Ke (Fuzhou University, China), Fahad Shahbaz Khan (Mohamed Bin Zayed University of Artificial Intelligence, UAE), Byeong Hak Kim (Korea Institute of Industrial Technology (KITECH), Korea), Josef Kittler (University of Surrey, United Kingdom), Xiangyuan Lan (Hong Kong Baptist University, China), Jun Ha Lee (Korea Institute of Industrial Technology (KITECH), Korea), Bastian Leibe (RWTH Aachen University, Germany), Hui Li (Jiangnan University, China), Jianhua Li (Dalian University of Technology, China), Xianxian Li (Guangxi Normal University, China), Yuezhou Li (Fuzhou University, China), Bo Liu (JD Finance America Corporation, USA), Chang Liu (Dalian University of Technology, China), Jingen Liu (JD Finance America Corporation, USA), Li Liu (Shenzhen Research Institute of Big Data, China), Qingjie Liu

(Beihang University, China), Huchuan Lu (Dalian University of Technology, China; Peng Cheng Laboratory, China), Wei Lu (Zhejiang Dahua Technology CO, China), Jonathon Luiten (RWTH Aachen University, Germany), Jie Ma (Huaqiao University, China), Ziang Ma (Zhejiang Dahua Technology CO, China), Niki Martinel (University of Udine, Italy), Christoph Mayer (ETH Zurich, Switzerland), Alireza Memarmoghadam (University of Isfahan, Iran), Christian Micheloni (University of Udine, Italy), Yuzhen Niu (Fuzhou University, China), Danda Paudel (ETH Zurich, Switzerland), Houwen Peng (Microsoft Research Asia, China), Shoumeng Qiu (SIMIT, China), Aravindh Rajiv (Indian Institute of Technology Tirupati, India), Muhammad Rana (University of Surrey, United Kingdom), Andreas Robinson (Linköping University, Sweden), Hasan Saribas (Eskisehir Technical University, Turkey), Ling Shao (Inception Institute of Artificial Intelligence, China), Mohamed Shehata (University of British Columbia, Canada), Furao Shen (Nanjing University, China), Jianbing Shen (Inception Institute of Artificial Intelligence, China), Kristian Simonato (University of Udine, Italy), Xiaoning Song (Jiangnan University, China), Zhangyong Tang (Jiangnan University, China), Radu Timofte (ETH Zurich, Switzerland), Philip Torr (University of Oxford, United Kingdom), Chi-Yi Tsai (Tamkang University, Taiwan), Bedirhan Uzun (Eskisehir Osmangazi University, Turkey), Luc Van Gool (ETH Zurich, Switzerland), Paul Voigtlaender (RWTH Aachen University, Germany), Dong Wang (Dalian University of Technology, China), Guangting Wang (University of Science and Technology of China, China), Liangliang Wang (ByteDance, China), Lijun Wang (Dalian University of Technology, China), Limin Wang (Nanjing University, China), Linyuan Wang (Zhejiang Dahua Technology CO, China), Yong Wang (Sun Yat-sen University, China), Yunhong Wang (Beihang University, China), Chenyan Wu (Penn State University, USA), Gangshan Wu (Nanjing University, China), Xiao-Jun Wu (Jiangnan University, China), Fei Xie (Southeast University, China), Tianyang Xu (Jiangnan University, China; University of Surrey, United Kingdom), Xiang Xu (Nanjing University, China), Wanli Xue (Tianjin University of Technology, China), Bin Yan (Dalian University of Technology, China), Wankou Yang (Southeast University, China), Xiaoyun Yang (Remark AI, United Kingdom), Yu Ye (Fuzhou University, China), Jun Yin (Zhejiang Dahua Technology CO, China), Chengwei Zhang (Dalian Maritime University, China), Chunhui Zhang (University of Chinese Academy of Science, China), Haitao Zhang (Zhejiang Dahua Technology CO, China), Kaihua Zhang (Nanjing University of Information Science and Technology, China), Kangkai Zhang (University of Chinese Academy of Science, China), Xiaohan Zhang (Dalian University of Technology, China), Xiaolin Zhang (SIMIT, China), Xinyu Zhang (Dalian University of Technology, China), Zhibin Zhang (Tianjin University of Technology, China), Shaochuan Zhao (Jiangnan University, China), Ming Zhen (ByteDance, China), Bineng Zhong (Guangxi Normal University, China), Jiawen Zhu (Dalian University of Technology, China), and Xue-Feng Zhu (Jiangnan University, China)

Vision for Vitals (V4V)

Beat-To-Beat Cardiac Pulse Rate Measurement From Video	39
Estimating Heart Rate From Unlabelled Video	43
LCOMS Lab's Approach to the Vision for Vitals (V4V) Challenge	50
 Automatic Region-Based Heart Rate Measurement Using Remote Photoplethysmography	55
The First Vision for Vitals (V4V) Challenge for Non-Contact Video-Based Physiological 276 Estimation 276 Ambareesh Revanur (Carnegie Mellon University), Zhihua Li (Binghamton 276 University), Umur A. Ciftci (Binghamton University), Lijun Yin (Binghamton University), and László A. Jeni (Carnegie Mellon University) 100	60

Vision Meets Drones: A Challenge (VisDrone)

Tackling the Background Bias in Sparse Object Detection via Cropped Windows	3
 TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios	3
Coarse-Grained Density Map Guided Object Detection in Aerial Images)
 ViT-YOLO:Transformer-Based YOLO for Object Detection)

GIAOTracker: A Comprehensive Framework for MCMOT With Global Information and Optimizing Strategies in VisDrone 2021 2809
Yunhao Du (Beijing University of Posts and Telecommunications)
Iuntee Du (Deijing etheorory of Poolo una Percommunications), Iunfeng Wan (Rejijng Hnizersity of Poets and Telecommunications)
Vanuun Zhao (Beijing University of Posts and Telecommunications),
Raijing Van Laboratory of Natzwork System and Natzwork Culture China)
Delling Rey Luboratory of Inerwork System and Telecommunications)
Binyu Zhung (Beijing University of Posts and Telecommunications), Thileses Tenes (Beijing University of Posts and Telecommunications), and
Zninang Tong (Beijing University of Posts and Telecommunications), and
Junhao Dong (Beijing University of Posts and Telecommunications)
VistrongerDet: Stronger Visual Information for Object Detection in VisDrone Images
Patitive Key Laboratory of Natural Custom and Natural Culture China)
Beijing Key Laboratory of Network System and Network Culture, China),
Yunhao Du (Beijing University of Posts and Telecommunications), and
Zhihang Tong (Beijing University of Posts and Telecommunications)
VisDrone-CC2021: The Vision Meets Drone Crowd Counting Challenge Results
University of Science and Technology, China), Lujia Wang (The Hong
Kong University of Science and Technology, China), Wenguan Wang (ETH
Zurich, Switzerland), Yixuan Yuan (City University of Hong Kong,
China), Dingwen Zhang (Northwestern Polytechnical University, China),
Iinglin Zhang (Naniing University of Information Science and
Technology, China), Penofei Zhu (Tianiin University, China), Luc Van
Gool (ETH Zurich, Switzerland), Iunwei Han (Northwestern Polytechnical
University, China), Steven Hoi (Sinoanore Management University.
Sinoanore), Oinohua Hu (Tianiin Universitu, China), Mino Liu (The Hono
Kong University of Science and Technology China) Junion Pan (Tianiin
Initiersity China) Baogun Vin (IInitiersity of Science and Technology
of Ching, Ching), Buoquit I'm (Chinoclishy of Sectice and Technology
of China, China), Binya Zhang (Beijing Chinersity of 10515 and Talacommunications, China) Chanoxin Liu (Huazhona Unizoroitu of
Seignee and Technology (China), Ding Ding (Whikan University Of
Dinokana Liana (Huazhana Uniziaraitu of Saimea and Technology, China)
Dingkung Liung (Thulan Inderstity of Science und Technology, China),
Guanchen Ding (vvunan University, China), Hao Lu (Huazhong University
of Science and Technology, China), Hui Lin (XI an Juotong University,
China), Jingyuan Chen (vvunan University, China), Jiong Li (Xi an
Jiaotong University, China), Liang Liu (Huazhong University of Science
and Technology, China), Lin Zhou (Wunan University, China), Min Shi
(Huazhong University of Science and Technology, China), Qianqian Yang
(University of Science and Technology of China, China), Qing He
(University of Science and Technology of China, China), Sifan Peng
(University of Science and Technology of China, China), Wei Xu
(Beijing University of Posts and Telecommunications, China), Wenwei
Han (Wuhan University, China), Xiang Bai (Huazhong University of
Science and Technology, China), Xiwu Chen (Huazhong University of
Science and Technology, China), Yabin Wang (Xi'an Jiaotong University,
China), Yinfeng Xia (University of Science and Technology of China,
China), Yiran Tao (Wuhan University, China), Zhenzhong Chen (Wuhan
University, China), and Zhiguo Cao (Huazhong University of Science and
Technology, China)

Guanlin Chen (Tianjin University, China), Wenguan Wang (ETH Zurich, Switzerland), Zhijian He (The Hong Kong University of Science and Technology, China), Lujia Wang (The Hong Kong University of Science and Technology, China), Yixuan Yuan (City University of Hong Kong, China), Dingwen Zhang (Northwestern Polytechnical University, China), Jinglin Zhang (Nanjing University of Information Science and Technology, China), Pengfei Zhu (Tianjin University, China), Luc Van Gool (ETH Zurich, Switzerland), Junwei Han (Northwestern Polytechnical University, China), Steven Hoi (Singapore Management University, Singapore), Qinghua Hu (Tianjin University, China), Ming Liu (The Hong Kong University of Science and Technology, China), Andrea Sciarrone (University of Genova, Italy), Chao Sun (Zhejiang University, China), Chiara Garibotto (University of Genova, Italy), Duong Nguyen-Ngoc Tran (Sungkyunkwan University, South Korea), Fabio Lavagetto (University of Genova, Italy), Halar Haleem (University of Genova, Italy), Hakkı Motorcu (Özyeğin University, Turkey), Hasan F. Ateş (Medipol University, Turkey), Huy-Hung Nguyen (Sungkyunkwan University, South Korea), Hyung-Joon Jeon (Sungkyunkwan University, South Korea), Igor Bisio (University of Genova, Italy), Jae Wook Jeon (Sungkyunkwan University, South Korea), Jiahao Li (Zhejiang University, China), Long Hoang Pham (Sungkyunkwan University, South Korea), Moongu Jeon (Gwangju Institute of Science and Technology, Korea), Qianyu Feng (University of Technology Sydney, Australia), Shengwen Li (Beijing University of Posts and Telecommunications, China), Tai Huu-Phuong Tran (Sungkyunkwan University, South Korea), Xiao Pan (Zhejiang University, China), Young-min Song (Gwangju Institute of Science and Technology, Korea), Yuehan Yao (DeepBlue Technology(Shanghai) Co., Ltd, China), Yunhao Du (Beijing University of Posts and Telecommunications, China), Zhenyu Xu (DeepBlue Technology(Shanghai) Co., Ltd, China), and Zhipeng Luo (DeepBlue Technology(Shanghai) Co., Ltd, China)

Yaru Cao (Tianjin University, China), Zhijian He (The Hong Kong University of Science and Technology, China), Lujia Wang (The Hong Kong University of Science and Technology, China), Wenguan Wang (ETH Zurich, Switzerland), Yixuan Yuan (City University of Hong Kong, China), Dingwen Zhang (Northwestern Polytechnical University, China), Jinglin Zhang (Nanjing University of Information Science and Technology, China), Pengfei Zhu (Tianjin University, China), Luc Van Gool (ETH Zurich, Switzerland), Junwei Han (Northwestern Polytechnical University, China), Steven Hoi (Singapore Management University, Singapore), Qinghua Hu (Tianjin University, China), Ming Liu (The Hong Kong University of Science and Technology, China), Chong Cheng (Xi'an University of Technology, China), Fanfan Liu (University of Chinese Academy of Sciences, P.R.China), Guojin Cao (Xidian University, China), Guozhen Li (Dalian University of Technology, P.R.China), Hongkai Wang (Xi'an University of Technology, China), Jianye He (DeepBlue Technology(Shanghai) Co., Ltd, China), Junfeng Wan (Beijing University of Posts and Telecommunications, China), Qi Wan (Shenzhen University, P.R.China), Qi Zhao (Beihang University, China), Shuchang Lyu (Beihang University, China), Wenzhe Zhao (University of Chinese Academy of Sciences, P.R.China), Xiaoqiang Lu (Xidian University, China), Xingkui Zhu (Beihang University, China), Yingjie Liu (Tianjin Polytechnic University, China), Yixuan Lv (University of Chinese Academy of Sciences, P.R.China), Yujing Ma (Beihang University, China), Yuting Yang (Xidian University, China), Zhe Wang (DeepBlue Technology(Shanghai) Co., Ltd, China), Zhenyu Xu (DeepBlue Technology(Shanghai) Co., Ltd, China), Zhipeng Luo (DeepBlue Technology(Shanghai) Co., Ltd, China), Zhimin Zhang (DeepBlue Technology(Shanghai) Co., Ltd, China), Zhiguang Zhang (DeepBlue Technology(Shanghai) Co., Ltd, China), Zihao Li (University of Chinese Academy of Sciences, P.R.China), and Zixiao Zhang (Xidian University, China)

Autonomous Vehicle Vision (AVVision)

Monocular 3D Localization of Vehicles in Road Scenes	55
DriPE: A Dataset for Human Pose Estimation in Real-World Driving Settings	55
On the Road to Large-Scale 3D Monocular Scene Reconstruction Using Deep Implicit Functions 287 Thomas Roddick (University of Cambridge), Benjamin Biggs (University of Cambridge), Daniel Olmeda Reino (Toyota Motor Europe), and Roberto	′5

Cipolla (University of Cambridge)

 Weakly Supervised Approach for Joint Object and Lane Marking Detection
Speak2Label: Using Domain Knowledge for Creating a Large Scale Driver Gaze Zone Estimation Dataset 2896 Shreya Ghosh (Monash University), Abhinav Dhall (Monash University; Indian Institute of Technology Ropar), Garima Sharma (Monash University), Sarthak Gupta (Kroop AI), and Nicu Sebe (University of Trento)
Multi-Weather City: Adverse Weather Stacking for Autonomous Driving
YOLinO: Generic Single Shot Polyline Detection in Real Time
Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection Using RGB Camera and LiDAR
Occupancy Grid Mapping With Cognitive Plausibility for Autonomous Driving Applications 2934 Alice Plebe (University of Trento), Julian F. P. Kooij (Delft University of Technology), Gastone Pietro Rosati Papini (University of Trento), and Mauro Da Lio (University of Trento)
A Computer Vision-Based Attention Generator Using DQN
RaidaR: A Rich Annotated Image Dataset of Rainy Street Scenes
CDAda: A Curriculum Domain Adaptation for Nighttime Semantic Segmentation

Causal BERT: Improving Object Detection by Searching for Challenging Groups
CenterPoly: Real-Time Instance Segmentation Using Bounding Polygons
It's All Around You: Range-Guided Cylindrical Network for 3D Object Detection
SCARF: A Semantic Constrained Attention Refinement Network for Semantic Segmentation 3002 Xiaofeng Ding (Shanghai University), Chaomin Shen (East China Normal University), Zhengping Che (Didi Chuxing), Tieyong Zeng (The Chinese University of Hong Kong), and Yaxin Peng (Shanghai University)
SDVTracker: Real-Time Multi-Sensor Association and Tracking for Self-Driving Vehicles
SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection
Semantics-Aware Multi-Modal Domain Translation: From LiDAR Point Clouds to Panoramic Color Images
SS-SFDA: Self-Supervised Source-Free Domain Adaptation for Road Segmentation in Hazardous Environments
Graph Convolutional Networks for 3D Object Detection on Radar Data
Few-Shot Batch Incremental Road Object Detection via Detector Fusion
Synthetic Data Generation Using Imitation Training

Efficient Uncertainty Estimation in Semantic Segmentation via Distillation
Autonomous Vehicle Vision 2021: ICCV Workshop Summary
Visual Reasoning Using Graph Convolutional Networks for Predicting Pedestrian Crossing Intention
Cross-Modal Matching CNN for Autonomous Driving Sensor Data Monitoring
Multi-Stage Fusion for Multi-Class 3D Lidar Detection

Closing the Loop Between Vision and Language (CLVL)

 Egocentric Biochemical Video-and-Language Dataset	122
CIGLI: Conditional Image Generation From Language & Image	127
 Semi-Autoregressive Transformer for Image Captioning	132
Latent Variable Models for Visual Question Answering	137

What You Say Is Not What You Do: Studying Visio-Linguistic Models for TV Series Summarization Alison Reboud (EURECOM, Sophia Antipolis, France) and Raphaël Troncy (EURECOM, Sophia Antipolis, France)	. 3142
Visual Question Answering With Textual Representations for Images Yusuke Hirota (Osaka University), Noa Garcia (Osaka University), Mayu Otani (CyberAgent, Inc.), Chenhui Chu (Kyoto University), Yuta Nakashima (Osaka University), Ittetsu Taniguchi (Osaka University), and Takao Onoye (Osaka University)	. 3147
Language-Guided Multi-Modal Fusion for Video Action Recognition Jenhao Hsiao (OPPO US Research Center), Yikang Li (OPPO US Research Center), and Chiuman Ho (OPPO US Research Center)	.3151

AI for Creative Video Editing and Understanding (CVEU)

Video Transformer Network	56
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks	66
 Face, Body, Voice: Video Person-Clustering With Multiple Modalities	77
 Video Contrastive Learning With Global Context	88
Plots to Previews: Towards Automatic Movie Preview Retrieval Using Publicly Available Meta-Data	98
Learning Where To Cut From Edited Videos	08

Fabian Caba (Adobe Research), and Aseem Agarwala (Adobe Research)

VLG-Net: Video-Language Graph Matching Network for Video Grounding	217
Mattia Soldan (King Abdullah University of Science and Technology	
(KAUST), Saudi Arabia), Mengmeng Xu (King Abdullah University of	
Science and Technology (KAUST), Saudi Arabia), Sisi Qu (King Abdullah	
University of Science and Technology (KAUST), Saudi Arabia), Jesper	
Tegner (King Abdullah University of Science and Technology (KAUST),	
Saudi Arabia), and Bernard Ghanem (King Abdullah University of Science	
and Technology (KAUST), Saudi Arabia)	

Computer Vision for Automated Medical Diagnosis (CVAMD)

 VTGAN: Semi-Supervised Retinal Image Synthesis and Disease Prediction Using Vision Transformers	;
A Dual Adversarial Calibration Framework for Automatic Fetal Brain Biometry	•
Uncertainty-aware GAN With Adaptive Loss for Robust MRI Image Enhancement	;
Improving Tuberculosis (TB) Prediction Using Synthetically Generated Computed Tomography (CT) Images 3258 Ashia Lewis (The University of Alabama), Evanjelin Mahmoodi 3258 (University of California, Santa Cruz), Yuyue Zhou (New York 3258 University), Megan Coffee (NYU Grossman School of Medicine), and Elena Sizikova (New York University)	
Deep Frequency Re-Calibration U-Net for Medical Image Segmentation	,
Multi-Scanner Harmonization of Paired Neuroimaging Data via Structure Preserving Embedding Learning	,

 End-to-End Learning of Fused Image and Non-Image Features for Improved Breast Cancer Classification From MRI
Graph Cuts Loss To Boost Model Accuracy and Generalizability for Medical Image Segmentation
Learning To Automatically Diagnose Multiple Diseases in Pediatric Chest Radiographs Using Deep Convolutional Neural Networks
 SOoD: Self-Supervised Out-of-Distribution Detection Under Domain Shift for Multi-Class Colorectal Cancer Tissue Types
BERTHop: An Effective Vision-and-Language Model for Chest X-Ray Disease Diagnosis
Medical Image Classification Using Generalized Zero Shot Learning
EfficientARL: Improving Skin Cancer Diagnoses by Combining Lightweight Attention on EfficientNet

DMNet: Dual-Stream Marker Guided Deep Network for Dense Cell Segmentation and Lineage Tracking
Rina Bao (University of Missouri-Columbia, USA), Noor M. Al-Shakarji (University of Missouri-Columbia, USA), Filiz Bunyak (University of Missouri-Columbia, USA), and Kannappan Palaniappan (University of Missouri-Columbia, USA)
Unsupervised 3D Shape Coverage Estimation With Applications to Colonoscopy
Generalizing Few-Shot Classification of Whole-Genome Doubling Across Cancer Types
Style Transfer Based Coronary Artery Segmentation in X-Ray Angiogram
Segmentation for Classification of Screening Pancreatic Neuroendocrine Tumors
MedSkip: Medical Report Generation Using Skip Connections and Integrated Attention
Studying the Effects of Self-Attention for Medical Image Analysis

Egocentric Perception, Interaction and Computing (EPIC)

MAAD: A Model and Dataset for "Attended Awareness" in Driving	
Deepak Gopinath (Northwestern University, USA), Guy Rosman (Toyota	
Research Institute, USA), Simon Stent (Toyota Research Institute,	
USA), Katsuya Terahata (Woven Planet Holdings, Japan), Luke Fletcher	
(Motional, USA), Brenna Argall (Northwestern University, USA), and	
John Leonard (Toyota Research Institute, USA)	

 SlowFast Rolling-Unrolling LSTMs for Action Anticipation in Egocentric Videos	430
 Seeing the Unseen: Predicting the First-Person Camera Wearer's Location and Pose in Third-Person Scenes	439
Egocentric Indoor Localization From Room Layouts and Image Outer Corners	449
1000 Pupil Segmentations in a Second Using Haar Like Features and Statistical Learning	459

Real-World Computer Vision From Inputs With Limited Quality (RLQ)

Temporal Kernel Consistency for Blind Video Super-Resolution Lichuan Xiang (University of Warwick), Royson Lee (University of Cambridge), Mohamed S. Abdelfattah (Samsung AI Center, Cambridge), Nicholas D. Lane (University of Cambridge, Samsung AI Center, Cambridge), and Hongkai Wen (University of Warwick, Samsung AI Center, Cambridge)	. 3470
UAC: An Uncertainty-Aware Face Clustering Algorithm Biplob Debnath (NEC Laboratories America, Inc., USA), Giuseppe Coviello (NEC Laboratories America, Inc., USA), Yi Yang (NEC Laboratories America, Inc., USA), and Srimat Chakradhar (NEC Laboratories America, Inc., USA)	3480
LLVIP: A Visible-Infrared Paired Dataset for Low-Light Vision	3489

Blocks World Revisited: The Effect of Self-Occlusion on Classification by Convolutional Neural Networks	3498
Markus D. Solbach (York University, Canada) and John K. Tsotsos (York University, Canada)	
Multiple GAN Inversion for Exemplar-Based Image-to-Image Translation <i>Taewon Kang (Korea University, Korea)</i>	. 3508
Single-Stage Face Detection Under Extremely Low-Light Conditions Jun Yu (University of Science and Technology of China, China), Xinlong Hao (University of Science and Technology of China, China), and Peng He (University of Science and Technology of China, China)	.3516

Affective Behavior Analysis In-the-Wild (ABAW)

FSER: Deep Convolutional Neural Networks for Speech Emotion Recognition
 Prior Aided Streaming Network for Multi-Task Affective Analysis
Causal Affect Prediction Model Using a Past Facial Image Sequence
Iterative Distillation for Better Uncertainty Estimates in Multitask Emotion Recognition
Continuous Emotion Recognition With Audio-Visual Leader-Follower Attentive Fusion
 Evaluating the Performance of Ensemble Methods and Voting Strategies for Dense 2D Pedestrian Detection in the Wild
Noisy Annotations Robust Consensual Collaborative Affect Expression Recognition

Emotion Recognition With Sequential Multi-Task Learning Technique	86
MTMSN: Multi-Task and Multi-Modal Sequence Network for Facial Action Unit and Expression Recognition	90
A Multi-Task Mean Teacher for Semi-Supervised Facial Affective Behavior Analysis	96
Emotion Recognition Based on Body and Context Fusion in the Wild	02
 Public Life in Public Space (PLPS): A Multi-Task, Multi-Group Video Dataset for Public Life Research	11
Student Engagement Dataset362Kevin Delgado (Boston University), Juan Manuel Origgi (Boston362University), Tania Hasanpoor (Boston University), Hao Yu (BostonUniversity), Danielle Allessio (University of Massachusetts Amherst),Ivon Arroyo (University of Massachusetts Amherst), William Lee(University of Massachusetts Amherst), Margrit Betke (BostonUniversity), Beverly Woolf (University of Massachusetts Amherst), andSarah Adel Bargal (Boston University)	21
Multitask Multi-Database Emotion Recognition	30

An Audiovisual and Contextual Approach for Categorical and Continuous Emotion Recognition In-the-Wild	38
Analysing Affective Behavior in the Second ABAW2 Competition	45
Computer Vision in the Ocean (OceanVision)	
 Anomaly Detection for In Situ Marine Plankton Images	54
Improving Rare-Class Recognition of Marine Plankton With Hard Negative Mining	65
 Super-Resolution for In Situ Plankton Images	76
A New Deep Learning Engine for CoralNet	86
 Hyperspectral 3D Mapping of Underwater Environments	96

Underwater Marker-Based Pose-Estimation With Associated Uncertainty
The VAROS Synthetic Underwater Data Set: Towards Realistic Multi-Sensor Underwater Data With Ground Truth
Technology, Trondheim, Norway), Mauhing Yip (Norwegian University of Science and Technology, Trondheim, Norway), Andreas Langeland Teigen (Norwegian University of Science and Technology, Trondheim, Norway), Rudolf Mester (Norwegian University of Science and Technology, Trondheim, Norway), and Annette Stahl (Norwegian University of Science and Technology, Trondheim, Norway)
In-Situ Joint Light and Medium Estimation for Underwater Color Restoration
The Marine Debris Dataset for Forward-Looking Sonar Semantic Segmentation

Eye Tracking for AR/VR: Sensors and Applications (OpenEDS)

Simple Baselines Can Fool 360° Saliency Metrics	. 3743
Yasser Abdelaziz Dahou Djilali (Insight Centre for Data Analytics,	
Dublin City University (DCU)), Kevin McGuinness (Insight Centre for	
Data Analytics, Dublin City University (DCU)), and Noel E. O'Connor	
(Insight Centre for Data Analytics, Dublin City University (DCU))	

Responsible Pattern Recognition and Machine Intelligence (RPRMI)

The Watchlist Imbalance Effect in Biometric Face Identification: Comparing Theoretical Estimates and Empiric Measurements	
Pawel Drozdowski (da/sec – Biometrics and Internet Security Research Group, Germany), Christian Rathgeb (da/sec – Biometrics and Internet Security Research Group, Germany), and Christoph Busch (da/sec – Biometrics and Internet Security Research Group, Germany)	

 XAI Handbook: Towards a Unified Framework for Explainable AI	3759
Towards Solving the DeepFake Problem: An Analysis on Improving DeepFake Detection Using Dynamic Face Augmentation Sowmen Das (Shahjalal University of Science and Technology, Bangladesh), Selim Seferbekov (Mapbox), Arup Datta (Shahjalal University of Science and Technology, Bangladesh), Md. Saiful Islam (University of Alberta, Canada), and Md. Ruhul Amin (Fordham University, USA)	3769
Unravelling the Effect of Image Distortions for Biased Prediction of Pre-Trained Face Recognition Models Puspita Majumdar (IIIT-Delhi, India; IIT Jodhpur, India), Surbhi Mittal (IIT Jodhpur, India), Richa Singh (IIT Jodhpur, India), and Mayank Vatsa (IIT Jodhpur, India)	3779
Toward Affective XAI: Facial Affect Analysis for Understanding Explainable Human-AI Interactions <i>Luke Guerdan (University of Cambridge, United Kingdom), Alex Raymond</i> <i>(University of Cambridge, United Kingdom), and Hatice Gunes</i> <i>(University of Cambridge, United Kingdom)</i>	3789
Bridging the Gap Between Debiasing and Privacy for Deep Learning Carlo Alberto Barbano (University of Turin, Italy), Enzo Tartaglione (University of Turin, Italy; Telecom Paris, France), and Marco Grangetto (University of Turin, Italy)	3799

Airborne Object Tracking (AOTW)

Occluded Video Instance Segmentation (OVIS)

 Pedestrian Occlusion Level Classification Using Keypoint Detection and 2D Body Surface Area Estimation	26
Characterizing Scattered Occlusions for Effective Dense-Mode Crowd Counting	33
Occluded Video Instance Segmentation With Set Prediction Approach	43
Limited Sampling Reference Frame for MaskTrack R-CNN	47
A Single-Stage, Bottom-Up Approach for Occluded VIS Using Spatio-Temporal Embeddings 383 Ali Athar (RWTH Aachen University, Germany), Sabarinath Mahadevan (RWTH Aachen University, Germany), Aljosa Osep (Technical University of Munich, Germany), Laura Leal-Taixé (Technical University of Munich, Germany), and Bastian Leibe (RWTH Aachen University, Germany)	51
From VIS to OVIS: A Technical Report To Promote the Development of the Field	56

Analysis of Aerial Motion Imagery (WAAMI)

Robust Multi-Object Tracking Using Re-Identification Features and Graph Convolutional Networks	. 3861
Christian Lusardi (Rochester Institute of Technology, USA), Abu Md Niamul Taufique (Rochester Institute of Technology, USA), and Andreas Savakis (Rochester Institute of Technology, USA)	
Appearance and Motion Based Persistent Multiple Object Tracking in Wide Area Motion Imagery	. 3871
Lars Sommer (Fraunhofer IOSB, Germany), Wolfgang Krüger (Fraunhofer IOSB, Germany), and Michael Teutsch (Hensoldt Optronics GmbH, Germany)	

Simulated Photorealistic Deep Learning Framework and Workflows To Accelerate Computer Vision and Unmanned Aerial Vehicle Research	3882
JanusNet: Detection of Moving Objects From UAV Platforms Yuxiang Zhao (Novateur Research Solution), Khurram Shafique (Novateur Research Solution), Zeeshan Rasheed (Novateur Research Solution), and Maoxu Li (Novateur Research Solution)	3892
An Algorithmic Approach to Quantifying GPS Trajectory Error Matthew Plaudis (University of Victoria, Canada), Muhammad Azam (University of Victoria, Canada), Derek Jacoby (University of Victoria, Canada), Marc-Antoine Drouin (National Research Council of Canada), and Yvonne Coady (University of Victoria, Canada)	3902
Point Cloud Object Segmentation Using Multi Elevation-Layer 2D Bounding-Boxes Tristan Brodeur (Transparent Sky, USA), Hadi AliAkbarpour (Transparent Sky, USA; University of Missouri, USA), and Steve Suddarth (Transparent Sky, USA)	3910
Learning-Based Shadow Detection in Aerial Imagery Using Automatic Training Supervision From 3D Point Clouds Deniz Kavzak Ufuktepe (University of Missouri - Columbia), Jaired Collins (University of Missouri - Columbia), Ekincan Ufuktepe (University of Missouri - Columbia), Joshua Fraser (University of Missouri - Columbia), Timothy Krock (University of Missouri - Columbia), and Kannappan Palaniappan (University of Missouri - Columbia)	3919
Aerial Cross-Platform Path Planning Dataset Md. Shahid (Indian Institute of Technology Hyderabad) and Sumohana S. Channappayya (Indian Institute of Technology Hyderabad)	3929

Multi-Agent Interaction and Relational Reasoning (MAIR2)

Cross-Modal Relational Reasoning Network for Visual Question Answering	3939
Hongyu Chen (Beijing University of Posts and Telecommunications,	
China), Ruifang Liu (Beijing University of Posts and	
Telecommunications, China), and Bo Peng (Tencent Inc., China)	
BoMuDANet: Unsupervised Adaptation for Visual Scene Understanding in Unstructured Driving	
Environments	3949
Directo Vallandanana (Iluinanity of Manuland College Dark IICA) Delan	

Divya Kothandaraman (University of Maryland, College Park, USA), Rohan Chandra (University of Maryland, College Park, USA), and Dinesh Manocha (University of Maryland, College Park, USA)

Learning for Computational Imaging (LCI)

Photon-Limited Object Detection Using Non-Local Feature Matching and Knowledge Distillation
Fast Unsupervised MRI Reconstruction Without Fully-Sampled Ground Truth Data Using
Generative Adversarial Networks
 How To Cheat With Metrics in Single-Image HDR Reconstruction
 K-Space Refinement in Deep Learning MR Reconstruction via Regularizing Scan Specific SPIRiT-Based Self Consistency
 What Does Your Computational Imaging Algorithm Not Know?: A Plug-and-Play Model Quantifying Model Uncertainty
Joint Reconstruction and Calibration Using Regularization by Denoising With Application to Computed Tomography
Compressed Classification From Learned Measurements
 SS-JIRCS: Self-Supervised Joint Image Reconstruction and Coil Sensitivity Calibration in Parallel MRI Without Ground Truth

Thermal Image Processing via Physics-Inspired Deep Networks Vishwanath Saragadam (Rice University, USA), Akshat Dave (Rice University, USA), Ashok Veeraraghavan (Rice University, USA), and Richard G. Baraniuk (Rice University, USA)	. 4040
CryoPoseNet: End-to-End Simultaneous Learning of Single-Particle Orientation and 3D Map	
Reconstruction From Cryo-Electron Microscopy Data	. 4049
Youssef S. G. Nashed (Machine Learning Initiative, SLAC National	
Accelerator Laboratory), Frédéric Poitevin (SLAC National Accelerator	
Laboratory), Harshit Gupta (Machine Learning Initiative, SLAC National	
Accelerator Laboratory), Geoffrey Woollard (University of British	
Columbia), Michael Kagan (Fundamental Physics Directorate, SLAC	
National Accelerator Laboratory), Chun Hong Yoon (SLAC National	
Accelerator Laboratory), and Daniel Ratner (Machine Learning	
Initiative, SLAC National Accelerator Laboratory)	

Human-Centric Trustworthy Computer Vision: From Research to Applications (HTCV)

 Student-Teacher Oneness: A Storage-Efficient Approach That Improves Facial Expression <i>Chenzhu Zheng (University of Delaware, USA), Christopher Rasmussen (University of Delaware, USA), and Xi Peng (University of Delaware, USA)</i>)60
 Sparse Feature Representation Learning for Deep Face Gender Transfer)70
 Formula-Driven Supervised Learning With Recursive Tiling Patterns)81
End-to-End Model-Based Gait Recognition Using Synchronized Multi-View Pose Constraint 40 Xiang Li (Osaka University, Japan), Yasushi Makihara (Osaka University, Japan), Chi Xu (Osaka University, Japan), and Yasushi Yagi (Osaka University, Japan))89
Multi-Perspective Features Learning for Face Anti-Spoofing)99

Rethinking Common Assumptions To Mitigate Racial Bias in Face Recognition Datasets
Attention Aware Debiasing for Unbiased Model Prediction
On the Importance of Encrypting Deep Features
Transformer Meets Part Model: Adaptive Part Division for Person Re-Identification
 SVEA: A Small-Scale Benchmark for Validating the Usability of Post-Hoc Explainable AI Solutions in Image and Signal Recognition
FedAffect: Few-Shot Federated Learning for Facial Expression Recognition

Topology, Algebra, and Geometry in Computer Vision (TAG-CV)

Two-Parameter Persistence for Images via Distance Transform	159
The Flag Manifold as a Tool for Analyzing and Comparing Sets of Data Sets	168
A Unified Framework for Non-Negative Matrix and Tensor Factorisations With a Smoothed Wasserstein Loss	178
Dual Transformation and Manifold Distances Voting for Outlier Rejection in Point Cloud 4 Registration 4 Amit Efraim (Ben Gurion University, Israel) and Joseph M. Francos (Ben 4 Gurion University, Israel) 4	187
 Grassmannian Dimensionality Reduction for Optimized Universal Manifold Embedding Representation of 3D Point Clouds	196

Sheaves as a Framework for Understanding and Interpreting Model Fit	1205
A Manifold Learning Based Video Prediction Approach for Deep Motion Transfer	4214
Multi-Dimensional Scaling on Groups	1 222

Author Index