2021 17th European Dependable Computing Conference (EDCC 2021)

Munich, Germany 13 – 16 September 2021

IEEE Catalog Number: ISBN: CFP2181A-POD 978-1-6654-3672-4

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP2181A-POD
ISBN (Print-On-Demand):	978-1-6654-3672-4
ISBN (Online):	978-1-6654-3671-7
ISSN:	2641-810X

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 17th European Dependable Computing Conference (EDCC) EDCC 2021

Table of Contents

Message from the General Chairs	viii
Message from the Program Chair	ix
Keynotes	x

Distinguished Papers

Machine Learning to Combine Static Analysis Alerts with Software Metrics to Detect Security Vulnerabilities: An Empirical Study 1 José D'Abruzzo Pereira (University of Coimbra, CISUC, DEI, Portugal), 1 João R. Campos (University of Coimbra, CISUC, DEI, Portugal), 1 Marco Vieira (University of Coimbra, CISUC, DEI, Portugal), 1
Dynamic Risk Management for Safely Automating Connected Driving Maneuvers
Preventing Timing Failures in Mixed-Criticality Clouds with Dynamic Real-Time Containers 17 Marcello Cinque (University of Naples Federico II, Italy), Raffaele Della Corte (Critiware S.r.l., Italy), and Roberto Ruggiero (University of Naples Federico II, Italy)

Dependability Assessment

FaultFlow: a Tool Supporting an MDE Approach for Timed Failure Logic Analysis Jacopo Parri (University of Florence, Italy), Samuele Sampietro (University of Florence, Italy), and Enrico Vicario (University of Florence, Italy)	25
Tensor-Based Reliability Analysis of Complex Static Fault Trees	33
Dániel Szekeres (Budapest University of Technology and Economics,	
Hungary), Kristóf Marussy (Budapest University of Technology and	
Economics, Hungary), and István Majzik (Budapest University of	
Technology and Economics, Hungary)	
Why is it so Hard to Predict Computer Systems Failures?	41
Jomar Domingos (University of Coimbra, CISUC), Raul Barbosa	
(University of Coimbra, CISUC), and Henrique Madeira (University of	
Coimbra, CISUC)	

Verification

 SUFI: A Simulation-Based Fault Injection Tool for Safety Evaluation of Advanced Driver Assistance Systems Modelled in SUMO	
Run-Time Monitoring and Control for Temporal Fault Prevention in Mixed-Criticality Systems53 Daniel Loche (Technocentre Renault, France), Aléxis Génèrès (LAAS-CNRS, France), Michaël Lauer (LAAS-CNRS, France), and Jean-Charles Fabre (LAAS-CNRS, France)	
Live in ConSerts: Model-Driven Runtime Safety Assurance on Microcontrollers, Edge, and Cloud	
Security	
ATOCS: Automatic Configuration of Encryption Schemes for Secure NoSQL Databases	
Detectors of Smart Grid Integrity Attacks: an Experimental Assessment	

BDMPathfinder: a Tool for Exploring Attack Paths in Models Defined by Boolean Logic Driven	
Markov Processes	83
Ricardo M. Czekster (Newcastle University, United Kingdom) and Charles	
Morisset (Newcastle University, United Kingdom)	

AI & Dependability

An Empirical Study On Software Metrics and Machine Learning to Identify Untrustworthy Code.... 87 Nadia Medeiros (University of Coimbra, Portugal), Naghmeh Ivaki (University of Coimbra, Portugal), Pedro Costa (University of Coimbra, Portugal; ISCAC, Polytechnic Institute of Coimbra, Portugal), and Marco Vieira (University of Coimbra, Portugal) Handling Uncertainties of Data-Driven Models in Compliance with Safety Constraints for

	-	•	
Autonomous Behaviour	 		95

Michael Kläes (Fraunhofer Institute for Experimental Software Engineering, Germany), Rasmus Adler (Fraunhofer Institute for Experimental Software Engineering, Germany), Ioannis Sorokos (Fraunhofer Institute for Experimental Software Engineering, Germany), Lisa Joeckel (Fraunhofer Institute for Experimental Software Engineering, Germany), and Jan Reich (Fraunhofer Institute for Experimental Software Engineering, Germany)

Systematic Modeling Approach for Environmental Perception Limitations in Automated Driving.. 103 Ahmad Adee (Robert Bosch GmbH, Germany), Roman Gansch (Robert Bosch GmbH, Germany), and Peter Liggesmeyer (University of Kaiserslautern, Germany)

Distributed Systems

Self-Stabilizing Multivalued Consensus in Asynchronous Crash-Prone Systems Oskar Lundström (Chalmers University of Technology, Sweden), Michel Raynal (IRISA University, France and Polytechnic University, Hong Kong), and Elad M. Schiller (Chalmers University of Technology, Sweden)	. 111
Stream-Based State-Machine Replication Laura Lawniczak (Friedrich-Alexander University Erlangen-Nurnberg) and Tobias Distler (Friedrich-Alexander University Erlangen-Nurnberg)	. 119
A Practical Self-Stabilizing Leader Election for Networks of Resource-Constrained IoT Devices Michael Conard (Michigan Technological University, USA) and Ali Ebnenasir (Michigan Technological University, USA)	127

Author Index			
--------------	--	--	--