2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C 2021)

Virtual Conference 27 September – 1 October 2021

IEEE Catalog Number: CFP21Y92-POD **ISBN:**

978-1-6654-4394-4

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21Y92-POD
ISBN (Print-On-Demand):	978-1-6654-4394-4
ISBN (Online):	978-1-6654-4393-7

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C) **ACSOS-C 2021**

Table of Contents

Message from the General Chairs	xiii
Message from the Program Chairs	xv
Message from the Workshops and Tutorials Chairs	xvii
Message from the Doctoral Symposium Chairs	xix
Organizing Committee	xx
Steering Committee	xxii
Advisory Board	xxiii
Program Committee	xxiv
AMGCC 2021 Committee	xxix
eCAS 2021 Committee	xxx
SeAC 2021 Committee	xxxii
SISSY 2021	xxxiii
SOCO 2021 Committee	xxxiv
SPS 2021 Committee	xxxv
ACSOS 2021 Tutorials	xxxvi
Keynotes	xxxvii
Sponsors	xl

9th International Workshop on Autonomic Management of High Performance Grid and Cloud Computing (AMGCC 2021)

An Efficient VM Scheduling Framework for Interactive Streaming Service Jongbeen Han (Seoul National University, South Korea), Minwook Lee (Chung-Ang University, South Korea), Chanho Choi (OLIM PLANET Inc., South Korea), Yongseok Son (Chung-Ang University, South Korea), and Hyeonsang Eom (Seoul National University, South Korea)	1
Data Separation Scheme on Lustre Metadata Server Based on Multi-Stream SSD	7
Cheongjun Lee (Korea Aerospace University, Korea), Jaehwan Lee (Korea	
Aerospace University, Korea), Chungyong Kim (Seoul National	
University, Korea), Jiwoo Bang (Seoul National University, Korea),	
Eun-Kyu Byun (Korea Institute of Science and Technology Information,	
Korea), and Hyeonsang Eom (Seoul National University, Korea)	

Development of QoS-Aware Agents with Reinforcement Learning for Autoscaling of Microservices on the Cloud
Implementing CUDA Unified Memory in the PyTorch Framework 20 Jake Choi (Seoul National University, Korea), Heon Young Yeom (Seoul 20 National University, Korea), and Yoonhee Kim (Sookmyung Woman's 20 University, Korea) 20
Is Data Migration Evil in the NVM File System?
 MeLoN: Distributed Deep Learning Meets the Big Data Platform
Q-Spark: QoS Aware Micro-Batch Stream Processing System using Spark
Towards Scalable Manycore-Aware Persistent B+-Trees for Efficient Indexing in Cloud Environments 44 Safdar Jamil (Sogang University, Republic of Korea), Awais Khan 44 (Sogang University, Republic of Korea), Bernd Burgstaller (Yonsei 41 University, Republic of Korea), and Youngjae Kim (Sogang University, Republic of Korea) 42

6th Workshop on Engineering Collective Adaptive Systems (eCAS 2021)

A Logic-Based Multiagent Product Configuration Model Emad Eldeen Elakehal (KU Leuven) and Joost Vennekens (KU Leuven)	50
Combining Central Control with Collective Adaptive Systems Christian Kröher (Software Systems Engineering, Institute of Computer Science, University of Hildesheim, Germany), Klaus Schmid (Software Systems Engineering, Institute of Computer Science, University of Hildesheim, Germany), Simon Paasche (Software Systems Engineering,	56
Institute of Computer Science, University of Hildesheim, Germany), and Christian Sauer (Software Systems Engineering, Institute of Computer Science, University of Hildesheim, Germany)	

Distributed Constraint Optimization for Task Allocation in Self-Adaptive Manufacturing Systems	2
Joseph Hirsch (Institute for Software & Systems Engineering, University of Augsburg, Germany), Martin Neumayer (Institute for Software & Systems Engineering, University of Augsburg, Germany), Hella Ponsar (Institute for Software & Systems Engineering, University of Augsburg, Germany), Oliver Kosak (Institute for Software & Systems Engineering, University of Augsburg, Germany), and Wolfgang Reif (Institute for Software & Systems Engineering, University of Augsburg, Germany)	
Effect of Monotonic Filtering on Graph Collection Dynamics	3
Employing Stochastic Multiplayer Games to Support Self-Organization over Ad Hoc Networks 74 Ian Riley (University of Tulsa, USA) and Rose F. Gamble (University of Tulsa, USA)	ł
Fostering Resilient Execution of Multi-Agent Plans Through Self-Organisation	L
Interactive Methodology to Iteratively Add Functionality to Swarm Programs	7
Performance Comparison of Simple Reflex Agents Using Stigmergy with Model-Based Agents in Self-Organizing Transportation	3
Towards Pulverised Architectures for Collective Adaptive Systems Through Multi-Tier Programming	•
 Work With What You've Got: An Approach for Resource-Driven Adaptation	;

5th Workshop on Self-Aware Computing (SeAC 2021)

A Novel Technique for Mapping Jammed Areas in Connected and Autonomous Vehicles (CAVs) 111 Md Shah Alam (University of Toledo), Acharya Abiral (University of Toledo), and Oluoch Jared (University of Toledo)

Applying Security-Awareness to Service-Based Systems Sharmin Jahan (University of Tulsa, USA) and Rose Gamble (University of Tulsa, USA)	118
Assessment of Configuration Stability and Variability in Collections of Self-Adaptive Systems	125
Sven Tomforde (Christian-Albrechts-Universität zu Kiel, Intelligent Systems, Kiel, Germany) and Martin Goller (Christian-Albrechts-Universitätt zu Kiel, Intelligent Systems, Kiel, Germany)	
Hybrid Planning with Receding Horizon: A Case for Meta-self-awareness Sona Ghahremani (Hasso Plattner Institute, University of Potsdam) and Holger Giese (Hasso Plattner Institute, University of Potsdam)	131
Reflective Learning Classifier Systems for Self-Adaptive and Self-Organising Agents Anthony Stein (Universität Hohenheim) and Sven Tomforde (Christian-Albrechts-Universität zu Kiel)	139
Self-Awareness as a Prerequisite for Self-Adaptivity in Computing Systems Ana Petrovska (Technical University of Munich, Germany)	146

8th Self-Improving Systems Integration Workshop (SISSY 2021)

 AI-Based On The Fly Design of Experiments in Physics and Engineering
An Information-oriented View of Multi-Scale Systems
 Augmented Collective Digital Twins for Self-Organising Cyber-Physical Systems
Digital Shadows in Self-Improving System Integration: A Concept Using Generative Modelling 166 Ghassan Al-Falouji (Christian-Albrechts-Universität zu Kiel, Intelligent Systems, Germany), Christian Gruhl (Universität Kassel, Intelligent Embedded Systems, Germany), and Sven Tomforde (Christian-Albrechts-Universität zu Kiel, Intelligent Systems, Germany)
Digital twins for collaboration and self-integration

Learn to Sense vs. Sense to Learn: A System Self-Integration Approach
Modeling and Integration for Complex Systems
Multi-Level Online Learning and Reasoning for Self-Integrating Systems
OHODIN Online Anomaly Detection for Data Streams
 Six Software Engineering Principles forSmarter Cyber-Physical Systems
The Problem with Real-World Novelty Detection – Issues in Multivariate Probabilistic Models 204 Christian Gruhl (University of Kassel), Abdul Hannan (University of Kassel), Zhixin Huang (University of Kassel), Chandana Nivarthi (University of Kassel), and Stephan Vogt (University of Kassel)
Towards a Method for Characterizing and Improving Integration among Different Systems210 Kirstie Bellman (Topcy House Consulting)
Towards a Plug-In Architecture to Enable Self-Adaptation through Middleware
Verification and Uncertainties in Self-integrating System

4th International Workshop on Self-Organized Construction (SOCO 2021)

Stigmergic, Diegetic Guidance of Swarm Construction	226
Samuel Truman (Julius-Maximilians University Würzburg), Jakob Seitz	
(Julius-Maximilians University Würzburg), and Sebastian von Mammen	
(Julius-Maximilians University Würzburg)	

The Computational Complexity of Designing Scalar-field Sensing Robot Teams and	
Environments for Distributed Construction (Extended Abstract)	232
Todd Wareham (Memorial University of Newfoundland) and Andrew Vardy	
(Memorial University of Newfoundland)	
Towards a Holistic, Self-organised Safety Framework for Construction Christos Chronopoulos (Aarhus University), Karsten Winther Johansen (Aarhus University), Jochen Teizer (Aarhus University), Carl Schultz (Aarhus University), and Lukas Esterle (Aarhus University)	238
What Can Collective Construction Learn from Neural Cellular Automata?	. 244

3rd International Workshop on Self-Protecting Systems (SPS 2021)

An anytime algorithm for dynamic multi-agent task allocation problems	:49
BDI-Dojo: developing robust BDI agents in evolving adversarial environments	57
Resiliency and Antifragility in Modern Software Systems- A Concept Paper	:63
Using Clone Detection for Finding Signatures of Malware Families: A Case Study on FinSpy 2 Nils Scheidweiler (Friedrich Schiller University Jena), André Schäfer (Friedrich Schiller University Jena), Wolfram Amme (Friedrich Schiller University Jena), and Thomas S. Heinze (German Aerospace Center (DLR))	:69

Vision Papers

Engineering Adaptive Authentication Alzubair Hassan (Lero @ University College Dublin, Ireland), Bashar Nuseibeh (The Open University, UK - Lero @ University of Limerick, Ireland), and Liliana Pasquale (Lero @ University College Dublin, Ireland, Ireland)	275
Towards Mapping Control Theory and Software Engineering Properties using Specification	
Patterns	281
Ricardo Caldas (Chalmers University of Technology and Gothenburg	
University, Sweden), Razan Gzhouli (Chalmers University of Technology	
and Gothenburg University, Sweden), Alessandro V. Papadopoulos	
(Mälardalen University, Sweden), Patrizio Pelliccione (Chalmers	
University of Technology and Gothenburg University, Sweden; Gran Sasso	
Science Institute, Italy), Danny Weyns (KU Leuven, Belgium and	
Linnaeus University, Sweden), and Thorsten Berger (Chalmers University	
of Technology; Gothenburg University, Sweden; Ruhr University Bochum,	
Germany)	

ACSOS-in-Practice

Challenges of Big Data and Vehicle Data	
Christian Prehofer (DENSO Automotive Germany)	
y 5	

Poster/Demo

A Real-Word Realization of the AntNet Routing Algorithm with ActivityBots	<u>2</u> 89
A Self-Learning Architecture for Digital Twins with Self-Protection	291
Bayesian Optimization-Based Analysis and Planning Approach for Self-Adaptive Cyber-Physical Systems Ana Petrovska (Technical University of Munich) and Julian Weick (CERN)	<u>2</u> 93
 Towards Autoscaling with Guarantees on Kubernetes Clusters	295
Towards Integration of Multi-Agent Planning with Self-Organising Collective Processes	<u>2</u> 97
 Who is the Ringleader? Modelling Influence in Discourse using Doc2Vec	<u>1</u> 99

Doctoral Symposium

A generic and decentralized approach to XAI for autonomic systems: application to the smart home	. 301
Enhancing the Smart, Digitized Food Supply Chain through Self-Learning and Self-Adaptive Systems Elia Henrichs (University of Hohenheim)	. 304
Lightweight and Reconfigurable Security Architecture for Internet of Things devices Armin Babaei (Duisburg Essen University)	307
Research directions for Aggregate Computing with Machine Learning Gianluca Aguzzi (Alma Mater Studiorum - Università di Bologna)	. 310

Towards an Autonomous, Power-efficient Base Station for Sensor Data Collection	313
Pierre-Louis Sixdenier (Friedrich-Alexander Universität	
Erlangen-Nürnberg)	
Vehicular Network Dynamic Grouping Scheme	316
Duaa Zuhair Al-Hamid (Electrical and Electronic Engineering, Auckland	
University of Technology, Auckland, New Zealand)	

Tutorial

How to Coordinate Decisions at Large Scale? A Hands-on Tutorial on Collective Learning for Smart Cities and Beyond Evangelos Pournaras (University of Leeds)	319
In-Situ Artificial Intelligence for Self-* Devices: The Elastic AI Ecosystem (Tutorial) Lukas Einhaus (University of Duisburg-Essen), Chao Qian (University of Duisburg-Essen), Christopher Ringhofer (University of Duisburg-Essen), and Gregor Schiele (University of Duisburg-Essen)	320

Author Index	 	 	
Author Index	 	 	