2021 International Symposium on Secure and Private Execution **Environment Design (SEED 2021)**

Virtual Conference 20-21 September 2021

IEEE Catalog Number: CFP21Z58-POD **ISBN:**

978-1-6654-2026-6

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21Z58-POD
ISBN (Print-On-Demand):	978-1-6654-2026-6
ISBN (Online):	978-1-6654-2025-9

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2021 International Symposium on Secure and Private Execution Environment Design (SEED) SEED 2021

Table of Contents

Message from General Chairs	ix
Message from Program Chairs	x
Organizing Committee	xii
Program Committee	xiii
Steering Committee	xiv
Keynotes	xv

Session 1: "The Eternal War of Side Channels"

Cloak & Co-Locate: Adversarial Railroading of Resource Sharing-Based Attacks on the Cloud Hosein Mohammadi Makrani (UC Davis, USA), Hossein Sayadi (California State University Long Beach, USA), Najmeh Nazari (UC Davis, USA), Khaled N. Khasawneh (George Mason University, USA), Avesta Sasan (UC Davis, USA), Setareh Rafatirad (UC Davis, USA), and Houman Homayoun (UC Davis, USA)	1
Seeds of SEED: A Side-Channel Resilient Cache Skewed by a Linear Function over a Galois Field Scott Constable (Security and Privacy Research (SPR), Intel Corporation) and Thomas Unterluggauer (Security and Privacy Research (SPR), Intel Corporation)	14
Seeds of SEED: R-SAW: New Side Channels Exploiting Read Asymmetry in MLC Phase Change Memories <i>Md Hafizul Islam Chowdhuryy (University of Central Florida), Rickard</i> <i>Ewetz (University of Central Florida), Amro Awad (North Carolina State</i> <i>University), and Fan Yao (University of Central Florida)</i>	22
Seeds of SEED: H2Cache: Building a Hybrid Randomized Cache Hierarchy for Mitigating Cache Side-Channel Attacks <i>Xingjian Zhang (Zhejiang University, China), Ziqi Yuan (Zhejiang University, China), Rui Chang (Zhejiang University, China), and Yajin Zhou (Zhejiang University, China)</i>	29
Bespoke Cache Enclaves: Fine-Grained and Scalable Isolation from Cache Side-Channels via Flexible Set-Partitioning <i>Gururaj Saileshwar (Georgia Institute of Technology, USA), Sanjay</i> <i>Kariyappa (Georgia Institute of Technology, USAA), and Moinuddin</i> <i>Qureshi (Georgia Institute of Technology, USA)</i>	37

Session 2: "All Good Memories!"

Performance-Enhanced Integrity Verification for Large Memories
Seeds of SEED: Efficient Access Pattern Obfuscation for Untrusted Hybrid Memory System
 Seeds of SEED: H-CRAM: In-Memory Homomorphic Search Accelerator Using Spintronic Computational RAM
 Seeds of SEED: NMT-Stroke: Diverting Neural Machine Translation Through Hardware-Based Faults
Seeds of SEED: New Security Challenges for Persistent Memory

Session 3: "To Speculate or Not, That is the Question!"

Do Not Predict - Recompute! How Value Recomputation Can Truly Boost the Performance of Invisible Speculation	89
Christos Sakalis (Uppsala University, Sweden), Zamshed I. Chowdhury	
(University of Minnesota, USA), Shayne Wadle (University of Wisconsin,	
(University of Murcia Snain). Maonus Siälander (Norweoian University	
of Science and Technology, Norway), Stefanos Kaxiras (Uppsala	
Úniversity, Sweden), and Ulya R. Karpúzcu (University of Minnesota, USA)	
Seeds of SEED: Preventing Priority Inversion in Instruction Scheduling to Disrupt	
Speculative Interference	. 101
Christos Sakalis (Uppsala University, Sweden), Magnus Själander	
(Norwegian University of Science and Technology, Norway), and Stefanos	
Kaxiras (Uppsala University, Sweden)	

SoK: Hardware Defenses Against Speculative Execution Attacks	108
Guangyuan Hu (Princeton University, USA), Zecheng He (Princeton	
University, USA), and Ruby B. Lee (Princeton University, USA)	

Session 4: Roundtable: "All Roads Lead to Privacy-Enhanced Computing"

Security Analysis of Confidential-Compute Instruction Set Architecture for Virtualized Workloads
Confidential Computing—A Brave New World
 VIP-Bench: A Benchmark Suite for Evaluating Privacy-Enhanced Computation Frameworks 139 Lauren Biernacki (University of Michigan), Meron Zerihun Demissie (Addis Ababa University), Kidus Birkayehu Workneh (Addis Ababa University), Galane Basha Namomsa (Addis Ababa University), Plato Gebremedhin (Addis Ababa University), Fitsum Assamnew Andargie (Addis Ababa University), Brandon Reagen (New York University), and Todd Austin (University of Michigan)
Context-Aware Privacy-Optimizing Address Tracing

Session 5: "Memory Safety - Does it Need to be HARD?"

EPI: Efficient Pointer Integrity for Securing Embedded Systems Evgeny Manzhosov (Columbia University, United States), Vasileios P. Kemerlis (Brown University, United States), Simha Sethumadhavan (Columbia University, United States), Mohamed Tarek Ibn Ziad (Columbia University), and Miguel A Arroyo (Columbia University)	163
Track Conventions, Not Attack Signatures: Fortifying X86 ABI and System Call Interfaces to Mitigate Code Reuse Attacks Sarp Ozdemir (Binghamton University, NY), Rutvik Saptarshi (Binghamton University, NY), Aravind Prakash (Binghamton University, NY), and Dmitry Ponomarev (Binghamton University, NY)	176

Session 6: "What's in Store for Secure Execution Environments?"

JAXED: Reverse Engineering DNN Architectures Leveraging JIT GEMM Libraries Malith Jayaweera (Northeastern University, USA), Kaustubh Shivdikar (Northeastern University, USA), Yanzhi Wang (Northeastern University, USA), and David Kaeli (Northeastern University, USA)	189
Seeds of SEED: Characterizing Enclave-Level Parallelism in Secure Multicore Processors	203
Seeds of SEED: Building and Verifying Foundationally Isolated Hardware Architectures	210
 Implementing a Security Architecture for Safety-Critical Railway Infrastructure	215

Author Index			
--------------	--	--	--