2021 51st Annual IEEE/IFIP **International Conference on Dependable Systems and** Networks (DSN 2021)

Virtual Conference 21 – 24 June 2021

IEEE Catalog Number:

CFP21048-POD ISBN: 978-1-6654-1194-3

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP21048-POD

 ISBN (Print-On-Demand):
 978-1-6654-1194-3

 ISBN (Online):
 978-1-6654-3572-7

ISSN: 1530-0889

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

DSN 2021

Table of Contents

Message from the Programme Chairs xiv. Steering Committee xvi. Drganizing Committee xvi. Programme Committee xviii. External Reviewers xx. Best Paper Award xxii. William C. Carter Award PhD Dissertation Award in Dependability xxiii. Rising Star in Dependability Award xxiv. Fest-of-Time Award xxx. Jean-Claude Laprie Award in Dependable Computing xxvi. Keynotes xxvii. Sponsors xxxii. Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of British Columbia, Canada),	
Organizing Committee xvi. Programme Committee xviii. External Reviewers xx. Best Paper Award xxii. William C. Carter Award PhD Dissertation Award in Dependability xxiii. Rising Star in Dependability Award xxiv. Fest-of-Time Award xxv. lean-Claude Laprie Award in Dependable Computing xxvi. Keynotes xxvii. Sponsors xxxii. Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of lova, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	Message from the Programme Chairs xiv
Programme Committee xviii. External Reviewers xx Best Paper Award xxii. William C. Carter Award PhD Dissertation Award in Dependability xxiii. Rising Star in Dependability Award xxiv. Test-of-Time Award xxv. Jean-Claude Laprie Award in Dependable Computing xxvi. Keynotes xxxii. Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction .1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of lova, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks .26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	Steering Committee xv
External Reviewers xx. Best Paper Award xxii	Organizing Committee xvi
Best Paper Award xxii William C. Carter Award PhD Dissertation Award in Dependability xxiii. Rising Star in Dependability Award xxiv. Fest-of-Time Award xxv. Fean-Claude Laprie Award in Dependable Computing xxvi. Keynotes xxvii Sponsors xxxii Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks .26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	Programme Committee xviii
William C. Carter Award PhD Dissertation Award in Dependability xxiii. Rising Star in Dependability Award xxiv. Test-of-Time Award xxy. Jean-Claude Laprie Award in Dependable Computing xxvi. Keynotes xxxii. Sponsors xxxii. Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	External Reviewers .xx
Rising Star in Dependability Award xxix Test-of-Time Award xxx Jean-Claude Laprie Award in Dependable Computing xxxi Keynotes xxxii Sponsors xxxii Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction .1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks .26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	
Test-of-Time Award xxv. Jean-Claude Laprie Award in Dependable Computing xxvi Keynotes xxvii Sponsors xxxii Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of lowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	William C. Carter Award PhD Dissertation Award in Dependability xxiii
Rean-Claude Laprie Award in Dependable Computing xxxi Keynotes xxxii Sponsors xxxii Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1	
Sponsors xxxii Sponsors xxxii A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	Test-of-Time Award .xxv.
Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction .1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks .26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	[ean-Claude Laprie Award in Dependable Computing xxvi
Best Paper Candidates A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	
A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	Sponsors xxxii
A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	
A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1. Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14. Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks 26. Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	
A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction 1	Best Paper Candidates
Zitao Chen (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14	•
(University of Iowa, USA), and Karthik Pattabiraman (University of British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14	A Low-Cost Fault Corrector for Deep Neural Networks through Range Restriction .1
British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems 14	Zitao Chen (University of British Columbia, Canada), Guanpeng Li
Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14	
Systems .14	(University of Iowa, USA), and Kartnik Pattabiraman (University of British Columbia, Canada)
Maher Khan (University of Pittsburgh, USA) and Amy Babay (University of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks .26	British Columbia, Canada)
of Pittsburgh, USA) PID-Piper: Recovering Robotic Vehicles from Physical Attacks .26 Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT
PID-Piper: Recovering Robotic Vehicles from Physical Attacks .26	British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14
Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14
Pritam Dash (University of British Columbia, Canada), Guanpeng Li (University of Iowa, USA), Zitao Chen (University of British Columbia,	British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14
(University of Iowa, USA), Zitao Chen (University of British Columbia,	British Columbia, Canada) Toward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14
	British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14
	British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14
and Karthik Pattabiraman (University of British Columbia, Canada)	British Columbia, Canada) Foward Intrusion Tolerance as a Service: Confidentiality in Partially Cloud-Based BFT Systems .14

R1 - Dependability for Machine Learning

GARFIELD: System Support for Byzantine Machine Learning 39 Rachid Guerraoui (EPFL), Arsany Guirguis (EPFL), Jérémy Plassmann (EPFL), Anton Ragot (EPFL), and Sébastien Rouault (EPFL)
Plinius: Secure and Persistent Machine Learning Model Training .52. Peterson Yuhala (University of Neuchâtel, Switzerland), Pascal Felber (University of Neuchâtel, Switzerland), Valerio Schiavoni (University of Neuchâtel, Switzerland), and Alain Tchana (ENS Lyon (Inria), France)
Decamouflage: A Framework to Detect Image-Scaling Attacks on CNN .63. Bedeuro Kim (University of Sungkyunkwan; CSIRO's Data61), Alsharif Abuadbba (CSIRO's Data61; Cybersecurity CRC), Yansong Gao (CSIRO's Data61; Nanjing University of Science and Technology), Yifeng Zheng (CSIRO's Data61; Harbin Institute of Technology), Muhammad Ejaz Ahmed (CSIRO's Data61;), Surya Nepal (CSIRO's Data61; Cybersecurity CRC), and Hyoungshick Kim (University of Sungkyunkwan; CSIRO's Data61)
MILR: Mathematically Induced Layer Recovery for Plaintext Space Error Correction of CNNs .75 Jonathan Ponader (University of Central Florida, USA), Kyle Thomas (University of Central Florida, USA), Sandip Kundu (University of Massachusetts, USA), and Yan Solihin (University of Central Florida, USA)
R2 - Networking
Fast IPv6 Network Periphery Discovery and Security Implications .88
A Comprehensive Study of Bugs in Software Defined Networks .1.01
Enabling Novel Interconnection Agreements with Path-Aware Networking Architectures .116 Simon Scherrer (ETH Zurich, Switzerland), Markus Legner (ETH Zurich, Switzerland), Adrian Perrig (ETH Zurich, Switzerland), and Stefan Schmid (Faculty of Computer Science, University of Vienna, Austria)
Self-Healing Protocol: Repairing Schedules Online After Link Failures in Time-Triggered Networks .129

R3 - Attacks, Vulnerabilities, and Patches

The Master and Parasite Attack 141. Lukas Baumann (Fraunhofer Institute for Secure Information Technology, Germany), Elias Heftrig (Fraunhofer Institute for Secure Information Technology, Germany), Haya Shulman (Fraunhofer Institute for Secure Information Technology, Germany), and Michael Waidner (Fraunhofer Institute for Secure Information Technology, Germany)
PatchDB: A Large-Scale Security Patch Dataset 149. Xinda Wang (Center for Secure Information Systems, George Mason University, USA), Shu Wang (Center for Secure Information Systems, George Mason University, USA), Pengbin Feng (Center for Secure Information Systems, George Mason University, USA), Kun Sun (Center for Secure Information Systems, George Mason University, USA), and Sushil Jajodia (Center for Secure Information Systems, George Mason University, USA)
PDGraph: A Large-Scale Empirical Study on Project Dependency of Security Vulnerabilities .161. Qiang Li (Beijing JiaoTong University, China), Jinke Song (Beijing JiaoTong University, China), Dawei Tan (Beijing JiaoTong University, China), Haining Wang (Virginia Polytechnic Institute and State University, USA), and Jiqiang Liu (Beijing JiaoTong University, China)
OCTOPOCS: Automatic Verification of Propagated Vulnerable Code Using Reformed Proofs of Concept 17.4
R4 - Systems Dependability
NVCache: A Plug-and-Play NVMM-Based I/O Booster for Legacy Systems .186
K2: Reading Quickly from Storage Across Many Datacenters .199
Horus: Non-Intrusive Causal Analysis of Distributed Systems Logs .212

R5 - Machine Learning for Dependability

Injed H (H H	ealing GPUs Vulnerabilities by Combining Register-Transfer and Software-Level Fault ction 292
1 1 1	mining Failures and Repairs on Supercomputers with Multi-GPU Compute Nodes .305
R 7	- Systems Security
1	Application Agnostic Defense Against the Dark Arts of Cryptojacking 314
((1	Ch You with Cache: Out-of-VM Introspection to Trace Malicious Executions .326
() 1 ()	Parads Optimal Use of Exception Handling Information for Function Detection .338
) S	udSkulk: A Nested Virtual Machine Based Rootkit and Its Detection .350

R8 - Fault Injection

FIRestarter: Practical Software Crash Recovery with Targeted Library-Level Fault Injection 363..... Koustubha Bhat (Vrije Universiteit Amsterdam, The Netherlands), Erik van der Kouwe (Vrije Universiteit Amsterdam, The Netherlands), Herbert Bos (Vrije Universiteit Amsterdam, The Netherlands), and Cristiano Giuffrida (Vrije Universiteit Amsterdam, The Netherlands)

WazaBee: Attacking Zigbee Networks by Diverting Bluetooth Low Energy Chips .37.6
InjectaBLE: Injecting Malicious Traffic into Established Bluetooth Low Energy Connections .388 Romain Cayre (CNRS, LAAS; APSYS.Lab, APSYS), Florent Galtier (CNRS, LAAS, France), Guillaume Auriol (CNRS, LAAS; Univ de Toulouse, INSA, LAAS), Vincent Nicomette (CNRS, LAAS; Univ de Toulouse, INSA, LAAS), Mohamed Kaâniche (CNRS, LAAS, France), and Géraldine Marconato (APSYS.Lab, APSYS)
Glitching Demystified: Analyzing Control-Flow-Based Glitching Attacks and Defenses .400
R9 - Trusted Execution Environments
R9 - Trusted Execution Environments Practical and Efficient in-Enclave Verification of Privacy Compliance 413

EncDBDB: Searchable Encrypted, Fast, Compressed, In-Memory Database Using Enclaves .438.....

Benny Fuhry (SAP Security Research, Germany), Jayanth Jain H A (SAP Security Research, Germany), and Florian Kerschbaum (University of Waterloo, Canada)

R10 - Modeling

Conservative Confidence Bounds in Safety, from Generalised Claims of Improvement & Statistical Evidence .451
Kizito Salako (Centre for Software Reliability City, University of London, UK), Lorenzo Strigini (Centre for Software Reliability City, University of London, UK), and Xingyu Zhao (University of Liverpool, UK)
Model Checking the Multi-formalism Language FIGARO .463.
Shahid Khan (RWTH Aachen University, Germany), Matthias Volk (RWTH Aachen University, Germany), Joost-Pieter Katoen (RWTH Aachen University, Germany), Alexis Braibant (Électricité de France, France),
and Marc Bouissou (Électricité de France, France)
Avis: In-Situ Model Checking for Unmanned Aerial Vehicles .471
R11 - IoT and Cyber Physical Systems
Data-Driven Design of Context-Aware Monitors for Hazard Prediction in Artificial Pancreas
Systems 484
Sanitizing the IoT Cyber Security Posture: An Operational CTI Feed Backed up by Internet
Measurements 497
Center for Security and Analytics, University of Texas at San Antonio, USA), and Elias Bou-Harb (The Cyber Center for Security and Analytics, University of Texas at San Antonio, USA)
Physics-Aware Security Monitoring Against Structural Integrity Attacks in 3D Printers .507 Sriharsha Etigowni (Rutgers University, USA), Sizhuang Liang (Georgia Institute of Technology, USA), Saman Zonouz (Rutgers University, USA), and Raheem Beyah (Georgia Institute of Technology, USA)
Compromised Computers Meet Voice Assistants: Stealthily Exfiltrating Data as Voice over
Telephony .519
R12 - Software Dependability
BigMap: Future-Proofing Fuzzers with Efficient Large Maps .531
Alif Ahmed (University of Virginia, USA), Jason D. Hiser (University of Virginia, USA), Anh Nguyen Tuong (University of Virginia, USA), Jack W. Davidson (University of Virginia, USA), and Kevin Skadron (University of Virginia, USA)

When Program Analysis Meets Bytecode Search: Targeted and Efficient Inter-Procedural
Analysis of Modern Android Apps in BackDroid 543
Daoyuan Wu (The Chinese University of Hong Kong, China), Debin Gao
(School of Information Systems, Singapore Management University,
Singapore), Robert H. Deng (School of Information Systems, Singapore
Management University, Singapore), and Rocky K. C. Chang (The Hong
Kong Polytechnic University, China)
Hiding in the Particles: When Return-Oriented Programming Meets Program Obfuscation .555 Pietro Borrello (Sapienza University of Rome), Emilio Coppa (Sapienza University of Rome), and Daniele Cono D'Elia (Sapienza University of Rome)
Statically Detecting JavaScript Obfuscation and Minification Techniques in the Wild .569
Marvin Moog (Saarland University; CISPA Helmholtz Center for
Information Security), Markus Demmel (Saarland University), Michael
Backes (CISPA Helmholtz Center for Information Security), and Aurore
Fass (CISPA Helmholtz Center for Information Security)
Author Index 581