2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS 2021)

Virtual Conference 18 – 21 May 2021

IEEE Catalog Number: ISBN:

CFP21044-POD 978-1-6654-4739-3

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP21044-POD

 ISBN (Print-On-Demand):
 978-1-6654-4739-3

 ISBN (Online):
 978-1-6654-0386-3

ISSN: 1545-3421

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS)

RTAS 2021

Table of Contents

Message from the Chairs Organizing Committee Program Committee Reviewers	xvi
Secure and Safe Operating Systems	
Practical Principle of Least Privilege for Secure Embedded Systems	1
SchedGuard: Protecting Against Schedule Leaks Using Linux Containers Jiyang Chen (University of Ilinois at Urbana Champaign, USA), Tomasz Kloda (Technical University of Munich, Germany), Ayoosh Bansal (University of Ilinois at Urbana Champaign, USA), Rohan Tabish (University of Ilinois at Urbana Champaign, USA), Chien-Ying Chen (University of Ilinois at Urbana Champaign, USA), Bo Liu (University of Ilinois at Urbana Champaign, USA), Sibin Mohan (University of Ilinois at Urbana Champaign, USA), Marco Caccamo (Technical University of Munich, Germany), and Lui Sha (University of Ilinois at Urbana Champaign, USA)	14
No Crash, No Exploit: Automated Verification of Embedded Kernels Olivier Nicole (Université Paris-Saclay, CEA List, Saclay, France; ENS, CNRS, PSL University, Paris, France), Matthieu Lemerre (Université Paris-Saclay, CEA List, Saclay, France), Sébastien Bardin (Université Paris-Saclay, CEA List, Saclay, France), and Xavier Rival (ENS, CNRS, PSL University, Paris, France; Inria, Paris, France)	27

End-to-End Timing Analysis

iming Analysis of Asynchronized Distributed Cause-Effect Chains	J
vent-Driven Delay-Induced Tasks: Model, Analysis, and Applications	3
Constrained Data-Age with Job-Level Dependencies: How to Reconcile Tight Bounds and Overheads	6
Hardware for Energy Efficiency and Timing Predictability	
nsert & Save: Energy Optimization in IP Core Integration for FPGA-based Real-time Systems Martin Geier (Technical University of Munich), Marian Brändle (Technical University of Munich), and Samarjit Chakraborty (University of North Carolina at Chapel Hill)	0
Hardware Platform for Exploring Predictable Cache Coherence Protocols for Real-Time Multicores	2
A Systematic Approach to Achieving Tight Worst-Case Latency and High-Performance Under redictable Cache Coherence	5
Machine Learning Meets Non-functional Constraints	
IL for RT: Priority Assignment Using Machine Learning	8

Developing Real-Time Scheduling Policy by Deep Reinforcement Learning .131	
Budget RNNs: Multi-Capacity Neural Networks to Improve In-Sensor Inference Under Energy Budgets .143	<i></i>
Scheduling and Analysis of Networking	
Fightening Network Calculus Delay Bounds by Predicting Flow Prolongations in the FIFO Analysis .157	
Deficit Round-Robin: A Second Network Calculus Analysis 171 Seyed Mohammadhossein Tabatabaee (EPFL, Switzerland) and Jean-Yves Le Boudec (EPFL, Switzerland)	
ASIL-Decomposition Based Routing and Scheduling in Safety-Critical Time-Sensitive Networking .184	
Soft Real Time is also Hard	
DNA: Dynamic Resource Allocation for Soft Real-Time Multicore Systems .196	
Effectively Scheduling Hard and Soft Real-Time Tasks on Multiprocessors .210	
OpenUVR: an Open-Source System Framework for Untethered Virtual Reality Applications .22 Alec Rohloff (Applied Research Associates), Zackary Allen (Red Hat Inc.), Kung-Min Lin (University of California, Berkeley), Joshua Okrend (Riverside Technology, Inc.), Chengyi Nie (Stony Brook University), Yu-Chia Liu (University of California, Riverside), and Hung-Wei Tseng (University of California, Riverside)	23

Real-Time Computing for Autonomous Systems
Real-Time Adaptive Sensor Attack Detection in Autonomous Cyber-Physical Systems
PiCAS: New Design of Priority-Driven Chain-Aware Scheduling for ROS2
Automatic Latency Management for ROS 2: Benefits, Challenges, and Open Problems
Mixed-Criticality Systems and Virtualization
Simultaneous Multithreading in Mixed-Criticality Real-Time Systems
Safety-Aware Integration of Hardware-Assisted Program Tracing in Mixed-Criticality Systems
for Security Monitoring
Latency Analysis of I/O Virtualization Techniques in Hypervisor-Based Real-Time Systems
Wireless (Powered) Networking
APaS: An Adaptive Partition-Based Scheduling Framework for 6TiSCH Networks
Low-Latency In-Band Integration of Multiple Low-Power Wide-Area Networks

Towards a Real-Time Wireless Powered Communication Network: Design, Implementation and
Evaluation
Fault Tolerance and Recovery
IGOR: Accelerating Byzantine Fault Tolerance for Real-Time Systems with Eager Execution
Do Not Overpay for Fault Tolerance!
Fault-Tolerant Mapping of Real-Time Parallel Applications Under Multiple DVFS Schemes 387 Minyu Cui (IRISA, France), Angeliki Kritikakou (IRISA, France), Lei Mo (Southeast University, China), and Emmanuel Casseau (IRISA, France)
ARA: Static Initialization of Dynamically-Created System Objects
Brief Presentations
Brief Industry Paper: The Matter of Time — A General and Efficient System for Precise Sensor Synchronization in Robotic Computing
Brief Industry Paper: Workload-Aware GPU Performance Estimation in the Airborne Embedded System
Brief Industry Paper: An Infrastructure-Aided High Definition Map Data Provisioning Service for Autonomous Driving

Brief Industry Paper: Towards Real-Time 3D Object Detection for Autonomous Vehicles with	
Pruning Search Pru Zhao (Northagatarra Haizaraita) Wai Niu (The College of William and	. 425
Pu Zhao (Northeastern University), Wei Niu (The College of William and Mary), Geng Yuan (Northeastern University), Yuxuan Cai (Northeastern	
University), Hsin-Hsuan Sung (North Carolina State University),	
Shaoshan Liu (PerceptIn), Sijia Liu (Michigan State University),	
Xipeng Shen (North Carolina State University & Facebook), Bin Ren (The	
College of William and Mary), Yanzhi Wang (Northeastern University),	
and Xue Lin (Northeastern University)	
Brief Industry Paper: An Energy-Reduction On-Chip Memory Management for Intermittent Systems	429
Yu-Pei Liang (Academia Sinica), Yu-Ting Fang (National Tsing Hua	
University), Shuo-Han Chen (National Taipei University of Technology),	
Yen-Ting Chen (Realtek Semiconductor Corp.), Tseng-Yi Chen (National	
Central University), Wei-Lin Wang (National Tsing Hua University),	
Wei-Kuan Shih (National Tsing Hua University), and Yuan-Hao Chang	
(Academia Sinica)	
Brief Industry Paper: Catching IoT Malware in the Wild Using HoneyIoT	433
Yiwen Xu (Tsinghua University), Yu Jiang (Tsinghua University), Lu Yu	
(National University of Defense Technology, China), and Juan Li (China Central Depository & Clearing Co., Ltd., China)	
Brief Industry Paper: AXI-Interconnect ^{RT} : Towards a Real-Time AXI-Interconnect for	
System-on-Chips	437
Zhe Jiang (ARM Ltd, United Kingdom), Neil Audsley (University of York,	
United Kingdom), Dayu Shi (ARM Ltd., United Kingdom), Kecheng Yang	
(Texas State University, USA), Nathan Fisher (Wayne State University,	
USA), and Zheng Dong (Wayne State University, USA)	
Brief Industry Paper: A Model-Based Framework and Tool Support for Capturing System	441
Werification Strategy	441
Brief Industry Paper: Optimizing Memory Efficiency of Graph Neural Networks on Edge Computing Platforms	445
Ao Zhou (Beijing University of Technology, China; Beihang University,	110
China), Jianlei Yang (Beihang University, China), Yeqi Gao (Beihang	
University, China), Tong Qiao (Beihang University, China), Yingjie Qi	
(Beihang University, China), Xiaoyi Wang (Beijing University of	
Technology, China), Yunli Chen (Beijing University of Technology,	
China), Pengcheng Dai (Beijing Bytedance Technology Co., Ltd, China),	
Weisheng Zhao (Beihang University, China), and Chunming Hu (Beihang	
University, China)	
Brief Industry Paper: SylixOS: A Secure and Compatible RTOS with Constant Scheduling on SMP	449
Yuanhai Zhang (Sun Yat-sen University, China), Hui Han (Acoinfo	
Technology Co., Ltd., China), Jinxing Jiao (Acoinfo Technology Co.,	
Ltd., China), Guizhou Xu (Acoinfo Technology Co., Ltd., China), Gang	
Chen (Sun Yat-sen University, China), and Kai Huang (Sun Yat-sen	
University, China)	

Brief Industry Paper: An Edge-Based High-Definition Map Crowdsourcing Task Distribution Framework for Autonomous Driving .453. Donghua Li (South China University of Technology, China), Jie Tang (South China University of Technology, China), and Shaoshan Liu
(PerceptIn, USA)
Brief Industry Paper: Modeling and Verification of Descent Guidance Control of Mars Lander 457. Bohua Zhan (Chinese Academy of Sciences, University of Chinese Academy of Sciences), Bin Gu (Beijing Institute of Control Engineering, China), Xiong Xu (Chinese Academy of Sciences, University of Chinese Academy of Sciences), Xiangyu Jin (Chinese Academy of Sciences, University of Chinese Academy of Sciences), Shuling Wang (Chinese Academy of Sciences, University of Chinese Academy of Sciences), Bai Xue (Chinese Academy of Sciences, University of Chinese Academy of Sciences), Xiaofeng Li (Beijing Institute of Control Engineering, China), Yao Chen (Beijing Institute of Control Engineering, China), Mengfei Yang (China Academy of Space Technology, China), and Naijun Zhan (Chinese Academy of Sciences)
Brief Industry Paper: HDAD: Hyperdimensional Computing-Based Anomaly Detection for Automotive Sensor Attacks .461
Brief Industry Paper: Tenma: A Real-time LibOS Developed for Industry Embedded Systems .465. Zhihui Gao (Huawei Technologies Co., Ltd, China), Hui Chen (Huawei Technologies Co., Ltd, China), Wei Ren (Huawei Technologies Co., Ltd, China), Jianhui Huang (Huawei Technologies Co., Ltd, China), Lei Dai (Huawei Technologies Co., Ltd, China), and Zichang Lin (Huawei Technologies Co., Ltd, China)
Brief Industry Paper: LiteOS: Managing Sleep for Low-Energy IoT .469
Brief Industry Paper: AutoToolCSU: CAN Signal Unpacking Tool for Automotive Software .47.3 Guoqi Xie (Hunan University, China), Pingfu Xie (Hunan University, China), Bo He (United Automotive Electronic Systems Co., Ltd.), Fengnan Huang (United Automotive Electronic Systems Co., Ltd.), and Renfa Li (Hunan University, China)
Brief Industry Paper: Dissecting the QNX Adaptive Partitioning Scheduler .477. Dakshina Dasari (Robert Bosch GmbH), Arne Hamann (Robert Bosch GmbH), Holger Broede (Robert Bosch GmbH), Michael Pressler (Robert Bosch GmbH), and Dirk Ziegenbein (Robert Bosch GmbH)
Brief Industry Paper: Digital Twin for Dependable Multi-Core Real-Time Systems — Requirements and Open Challenges .481

Nork in Progress: Network Attack Detection Towards Smart Factory .485	
Work in Progress: Role-Based Deep Reinforcement Learning with Information Sharing Intelligent Unmanned Systems .489	for
Work in Progress: Mobile or FPGA? A Comprehensive Evaluation on Energy Efficiency Unified Optimization Framework 493	and a
Work in Progress: Path-Based Graph Partition for Parallel Hardware-Accelerated Funct Verification 497	ional
Work in Progress: Topology-Based Multilevel Algorithm for Large-Scale Task Scheduli Clouds .501	ng in
Work in Progress: Fault Tolerance in a Two-State Regularity-Based Checkpointing System Elena Torre (University of Houston), Albert M. K. Cheng (University of Houston), Guangli Dai (University of Houston), and Pavan Kumar Paluri (University of Houston)	em .505
Work in Progress: Power-Aware Scheduling Strategy for Multiple DAGs in the Heterog Cloud 509	•
Work in Progress: Heart Disease Detection Methodology using E-Stethoscope .5.13 Sayeda Farzana Aktar (Lamar University, USA), Stefan Andrei (Lamar University, USA), and Albert M.K. Cheng (University of Houston, USA)	
Work in Progress: Identifying Unexpected Inter-Core Interference Induced by Shared C Denis Hoornaert (Technical University of Munich, Germany), Shahin Roozkhosh (Boston University, USA), Renato Mancuso (Boston University, USA), and Marco Caccamo (Techincal University of Munich, Germany)	ache .517

Demo Abstract: A Full-Blown 6TiSCH Network with Partition-Based Resource Management for
Large-Scale Real-Time Wireless Applications .521. Jiachen Wang (University of Connecticut), Tianyu Zhang (The Hong Kong Polytechnic University), Song Han (University of Connecticut), and
Xiaobo Sharon Hu (University of Notre Dame)
Demo Abstract: RT-WPCN: A Multi-hop Real-Time Wireless Powered Communication Network .523 Zelin Yun (University of Connecticut) and Song Han (University of Connecticut)
Author Index 525.