2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW 2021)

Portland, Oregon, USA 17 – 21 June 2021

Pages 1-519

IEEE Catalog Number: ISBN:

CFP2151J-POD 978-1-6654-1192-9

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2151J-POD

 ISBN (Print-On-Demand):
 978-1-6654-1192-9

 ISBN (Online):
 978-1-6654-3577-2

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) IPDPSW 2021

Table of Contents

Message from the 2021 General Co-Chairs xxiv	
IPDPS 2021 Message from the Workshops Chair and Vice-chair	
HCW: Heterogeneity in Computing Workshop	
Introduction to HCW 2021	
Message from the HCW Steering Committee Chair	
Message from the HCW General Chair	
Message from the HCW Technical Program Committee Chair	/A
HCW 2021 Keynote Speaker	/A
Adaptive Stochastic Gradient Descent for Deep Learning on Heterogeneous CPU+GPU Architectures	
Providing In-Depth Performance Analysis for Heterogeneous Task-Based Applications with StarVZ	
A Streaming Accelerator for Heterogeneous CPU-FPGA Processing of Graph Applications	

A New Double Rank-Based Multi-workflow Scheduling with Multi-objective Optimization in Cloud Environments
Feng Li (Nanyang Technological University, Singapore), Moon Gi Seok (Nanyang Technological University, Singapore), and Wentong Cai (Nanyang Technological University, Singapore)
Pooling Acceleration in the DaVinci Architecture Using Im2col and Col2im Instructions
Scheduling HPC Workflows with Intel Optane Persistent Memory
Coding the Computing Continuum: Fluid Function Execution in Heterogeneous Computing Environments
Practice and Experience in using Parallel and Scalable Machine Learning with Heterogenous Modular Supercomputing Architectures
RAW: Reconfigurable Architectures Workshop
Introduction to RAW 2021
Accelerating ODE-Based Neural Networks on Low-Cost FPGAs

An FPGA-Based On-Device Reinforcement Learning Approach using Online Sequential Learning 9 Hirohisa Watanabe (Keio University, Japan), Mineto Tsukada (Keio University, Japan), and Hiroki Matsutani (Keio University, Japan)	16
Plaster: An Embedded FPGA-Based Cluster Orchestrator for Accelerated Distributed Algorithms)4
Binary CoP: Binary Neural Network-Based COVID-19 Face-Mask Wear and Positioning Predictor on Edge Devices)8
Exploring a Layer-Based Pre-Implemented Flow for Mapping CNN on FPGA	.6
A Machine Learning Approach to Predict Timing Delays During FPGA Placement	<u>2</u> 4
Dovado: An Open-Source Design Space Exploration Framework	<u>2</u> 8
A Framework for the Automatic Generation of FPGA-Based Near-Data Processing Accelerators in Smart Storage Systems	36
On Data Parallelism Code Restructuring for HLS Targeting FPGAs	l4

Fast HBM Access with FPGAs: Analysis, Architectures, and Applications	52
Graph Analytics on Hybrid System (GAHS) Case Study: PageRank	60
Performance Study of Multi-tenant Cloud FPGAs	68
RV-CAP: Enabling Dynamic Partial Reconfiguration for FPGA-Based RISC-V System-on-Chip1 Najdet Charaf (Chair of Adaptive Dynamic Systems, Technische Universität Dresden, Germany), Ahmed Kamaleldin (Chair of Adaptive Dynamic Systems, Technische Universität Dresden, Germany), Martin Thümmler (Chair of Adaptive Dynamic Systems, Technische Universität Dresden, Germany), and Diana Göhringer (Chair of Adaptive Dynamic Systems, Technische Universität Dresden, Germany)	72
An Area-Efficient SPHINCS+ Post-Quantum Signature Coprocessor	80
FPGA Acceleration of Zstd Compression Algorithm	88
HiCOMB: High Performance Computational Biology	
Introduction to HiCOMB 2021	92

GYAN: Accelerating Bioinformatics Tools in Galaxy with GPU-Aware Computation Mapping Gulsum Gudukbay (Pennsylvania State University, USA), Jashwant Raj Gunasekaran (Pennsylvania State University, USA), Yilin Feng (Pennsylvania State University, USA), Mahmut T. Kandemir (Pennsylvania State University, USA), Anton Nekrutenko (Pennsylvania State University, USA), Chita R. Das (Pennsylvania State University, USA), Paul Medvedev (Pennsylvania State University, USA), Björn Grüning (University of Freiburg, Germany), Nate Coraor (Pennsylvania State University, USA), Nathan Roach (Galaxyworks, Johns Hopkins University, USA), and Enis Afgan (Galaxyworks, Johns Hopkins University, USA)	194
Accelerating SARS-CoV-2 low Frequency Variant Calling on Ultra Deep Sequencing Datasets Bryce Kille (Rice University, USA), Yunxi Liu (Rice University, USA), Nicolae Sapoval (Rice University, USA), Michael Nute (Rice University, USA), Lawrence Rauchwerger (University of Illinois at Urbana-Champaign, USA), Nancy Amato (University of Illinois at Urbana-Champaign, USA), and Todd J. Treangen (Rice University, USA)	204
GateKeeper-GPU: Fast and Accurate Pre-Alignment Filtering in Short Read Mapping	. 209
GPU Acceleration of 3D Agent-Based Biological Simulations Ahmad Hesam (Delft University of Technology, Netherlands), Lukas Breitwieser (CERN, Switzerland), Fons Rademakers (CERN, Switzerland), and Zaid Al-Ars (Delft University of Technology, Netherlands)	. 210
Efficient Memory Management in Likelihood-Based Phylogenetic Placement	. 218
Accelerating the BPMax Algorithm for RNA-RNA Interaction	228
GrAPL: Graphs, Architectures, Programming, and Learning	
Message from the GrAPL 2021 Workshop Chairs	. 238
GrAPL 2021 Keynote 1: Sparse Adjacency Matrices at the Core of Graph Databases: GraphBLAS the Engine Behind RedisGraph Property Graph Database	240
GrAPL 2021 Keynote 2: Label Propagation and Graph Neural Networks	. 242

LAGraph: Linear Algebra, Network Analysis Libraries, and the Study of Graph Algorithms	243
Introduction to GraphBLAS 2.0	253
Mathematics of Digital Hyperspace	263
SPbLA: The Library of GPGPU-Powered Sparse Boolean Linear Algebra Operations	272
PIGO: A Parallel Graph Input/Output Library	276
Hybrid Power-Law Models of Network Traffic	280
Characterizing Job-Task Dependency in Cloud Workloads Using Graph Learning	288
Co-Design of Advanced Architectures for Graph Analytics using Machine Learning	298
Sparse Binary Matrix-Vector Multiplication on Neuromorphic Computers Catherine D. Schuman (Oak Ridge National Laboratory, USA), Bill Kay (Oak Ridge National Laboratory, USA), Prasanna Date (Oak Ridge National Laboratory, USA), Ramakrishnan Kannan (Oak Ridge National Laboratory, USA), Piyush Sao (Oak Ridge National Laboratory, USA), and Thomas E. Potok (Oak Ridge National Laboratory, USA)	308

EduPar: NSF/TCPP Workshop on Parallel and Distributed Computing Education

Message from the EduPar-21 Workshop Chair	. 312
EduPar-21 Keynote: Using Smartphones to Teach Parallelism to First Year Students	. 314
Let's Put the Memory Model Front and Center when Teaching Parallel Programming in C++ Jiri Dokulil (University of Vienna, Austria)	315
Teaching Complex Scheduling Algorithms	.321
ABET Accreditation: A Way Forward for PDC Education Sherif G. Aly (The American University in Cairo, Egypt), Haidar Harmanani (Lebanese American University, Lebanon), Rajendra K. Raj (Rochester Institute of Technology, USA), and Sanaa Sharafeddine (Lebanese American University, Lebanon)	. 328
EduPar Virtual Poster Session Jesús Cámara (University of Murcia, Spain), José-Carlos Cano (University of Murcia, Spain), Javier Cuenca (University of Murcia, Spain), Toshiyuki Maeda (Hannan University, Japan), Mariano Saura-Sánchez (Technical University of Cartagena, Spain), Lewis Tseng (Boston College, USA), Akiyoshi Wakatani (Konan University, Japan), and Martina Barnas (Indiana University Bloomington, USA)	.336
Teaching PDC in the Time of COVID: Hands-on Materials for Remote Learning	. 342
Data-Intensive Computing Modules for Teaching Parallel and Distributed Computing	. 350
HIPS: High-level Parallel Programming Models and Supportive Environments	
Message from the HIPS 2021 Workshop Co-Chairs Julian Kunkel (University of Reading, UK) and Bin Ren (William & Mary, USA)	. 358

Developing Medical Ultrasound Beamforming Application on GPU and FPGA using oneAPI 36 Yong Wang (Intel China Research Center Ltd., China), Yongfa Zhou (Intel China Research Center Ltd., China), Qi (Scott) Wang (Intel China Research Center Ltd., China), Yang Wang (Intel China Research Center Ltd., China), Qing Xu (Intel China Research Center Ltd., China), Chen Wang (Intel China Research Center Ltd., China), Bo Peng (Intel China Research Center Ltd., China), Zhaojun Zhu (Intel China Research Center Ltd., China), Katayama Takuya (Intel China Research Center Ltd., China), and Dylan Wang (Intel China Research Center Ltd., China)	0
Evaluating CUDA Portability with HIPCL and DPCT	'1
Beyond Fork-Join: Integration of Performance Portable Kokkos Kernels with HPX 37 Gregor Daiß (University of Stuttgart, Institute for Parallel and Distributed Systems, Scientific Computing, Germany), Mikael Simberg (Swiss National Supercomputing Centre, Switzerland), Auriane Reverdell (Swiss National Supercomputing Centre, Switzerland), John Biddiscombe (Swiss National Supercomputing Centre, Switzerland), Theresa Pollinger (University of Stuttgart, Institute for Parallel and Distributed Systems, Scientific Computing, Germany), Hartmut Kaiser (Louisiana State University, CCT, USA), and Dirk Pflüger (University of Stuttgart, Institute for Parallel and Distributed Systems, Scientific Computing, Germany)	7
An Efficient Approach for Image Border Handling on GPUs via Iteration Space Partitioning 38 Bo Qiao (Friedrich-Alexander University Erlangen-Nürnberg, Germany), Jürgen Teich (Friedrich-Alexander University Erlangen-Nürnberg, Germany), and Frank Hannig (Friedrich-Alexander University Erlangen-Nürnberg, Germany)	i7
CUDAMicroBench: Microbenchmarks to Assist CUDA Performance Programming	7
Understanding Recursive Divide-and-Conquer Dynamic Programs in Fork-Join and Data-Flow Execution Models	17
Measuring Cache Complexity Using Data Movement Distance (DMD) (Position Paper)	.7
Combining Static and Dynamic Analysis to Query Characteristics of HPC Applications	:0

AsHES: Accelerators and Hybrid Emerging Systems

Introduction to AsHES 2021	130
AsHES 2021 Keynote	132
Dong Li (University of California, Merced, USA)	
Time-Division Multiplexing for FPGA Considering CNN Model Switch Time 4 Tetsuro Nakamura (NTT Network Service Systems Laboratories, Japan), Shogo Saito (NTT Network Service Systems Laboratories, Japan), Kei Fujimoto (NTT Network Service Systems Laboratories, Japan), Masashi Kaneko (NTT Network Service Systems Laboratories, Japan), and Akinori Shiraga (NTT Network Service Systems Laboratories, Japan)	133
Design Space Exploration of Emerging Memory Technologies for Machine Learning Applications4 S.M.Shamimul Hasan (Oak Ridge National Laboratory, USA), Neena Imam (Oak Ridge National Laboratory, USA), Ramakrishnan Kannan (Oak Ridge National Laboratory, USA), Srikanth Yoginath (Oak Ridge National Laboratory, USA), and Kuldeep Kurte (Oak Ridge National Laboratory, USA)	139
Accelerating Radiation Therapy Dose Calculation with Nvidia GPUs	149
Improving Cryptanalytic Applications with Stochastic Runtimes on GPUs	159
Experimental Evaluation of Multiprecision Strategies for GMRES on GPUs	169
GPU-Aware Communication with UCX in Parallel Programming Models: Charm++, MPI, and Pytho 479	on
Jaemin Choi (University of Illinois at Urbana-Champaign, USA), Zane Fink (University of Illinois at Urbana-Champaign, USA), Sam White (University of Illinois at Urbana-Champaign, USA), Nitin Bhat (Charmworks, Inc., USA), David F. Richards (Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, USA), and Laxmikant V. Kale (University of Illinois at Urbana-Champaign, USA; Charmworks, Inc., USA)	

PDCO: Parallel / Distributed Combi	natorics and Optimization
------------------------------------	---------------------------

ntroduction to PDCO 2021
CPRIC: Collaborative Parallelism for Randomized Incremental Constructions
Characters Recognition Based on CNN-RNN Architecture and Metaheuristic
inearizing Computing the Power Set with OpenMP
SurboBFS: GPU Based Breadth-First Search (BFS) Algorithms in the Language of Linear Algebra
A Parallel Meta-Solver for the Multi-objective Set Covering Problem
everaging High Dimensional Spatial Graph Embedding as a Heuristic for Graph Algorithms 539 Peter Oostema (Carnegie Mellon University, USA) and Franz Franchetti (Carnegie Mellon University, USA)
RNS Base Extension Error-Correcting Code for Performance Optimization of Scalable deliable Distributed Cloud Data Storage
APDCM: Advances in Parallel and Distributed Computational Models
ntroduction to APDCM 2021

Checkpointing vs. Supervision Resilience Approaches for Dynamic Independent Tasks	556
Gathering of Seven Autonomous Mobile Robots on Triangular Grids Masahiro Shibata (Kyushu Institute of Technology, Japan), Masaki Ohyabu (Nagoya Institute of Technology, Japan), Yuichi Sudo (Osaka University, Japan), Junya Nakamura (Toyohashi University of Technology, Japan), Yonghwan Kim (Nagoya Institute of Technology, Japan), and Yoshiaki Katayama (Nagoya Institute of Technology, Japan)	566
Autonomous Mobile Robots: Refining the Computational Landscape	576
Terminating grid Exploration with Myopic Luminous Robots	586
A self-Stabilizing Token Circulation with Graceful Handover on Bidirectional Ring Networks 5 Hirotsugu Kakugawa (Ryukoku University, Japan) and Sayaka Kamei (Hiroshima University, Japan)	596
Scalable and Highly Available Multi-objective Neural Architecture Search in Bare Metal Kubernetes Cluster	605
Revisiting Credit Distribution Algorithms for Distributed Termination Detection	511
Efficient and Eventually Consistent Collective Operations	521
Autonomous Load Balancing in Distributed Hash Tables Using Churn and the Sybil Attack 6 Andrew Rosen (Temple University, USA), Benjamin Levin (Temple University, USA), and Anu G. Bourgeois (Georgia State University, USA)	631
Performance Models for Hybrid Programs Accelerated by GPUs	641

Evaluating the Performance of Integer Sum Reduction on an Intel GPU	552
On the Computational Power of Convolution Pooling: A Theoretical Approach for Deep Learning	656
Koji Nakano (Hiroshima University, Japan), Shotaro Aoki (Hiroshima University, Japan), Yasuaki Ito (Hiroshima University, Japan), and Akihiko Kasagi (Fujitsu Laboratories Ltd., Japan)	
JSSPP: Job Scheduling Strategies for Parallel Processing	
Introduction to JSSPP 2021 6 Dalibor Klusáček (CESNET a.l.e.), Walfredo Cirne (Google), and Gonzalo P. Rodrigo (Apple)	566
PDSEC: Parallel and Distributed Scientific and Engineering Computi	ing
Message from the PDSEC-21 Workshop Chairs Sabine Roller (German Aerospace Center, Germany), Peter Strazdins (The Australian National University, Australia), Srishti Srivastava (University of Southern Indiana, USA), Raphael Couturier (University Bourgogne Franche-Comte, France), Neda Ebrahimi Pour (German Aerospace Center, Germany), Suzanne Michelle Shontz (University of Kansas, USA), Thomas Rauber (University of Bayreuth, Germany), Gudula Runger (Chemnitz University of Technology, Germany), and Laurence T. Yang (St. Francis Xavier University, Canada)	67
Load Balancing for Distributed Nonlocal Models within Asynchronous Many-Task Systems 6 Pranav Gadikar (Indian Institute of Technology Madras, India), Patrick Diehl (Center for Computation and Technology, Louisiana State University, USA), and Prashant K. Jha (Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA)	569
Scalable Hybrid Loop-and Task-Parallel Matrix Inversion for Multicore Processors	579
cuFINUFFT: A Load-Balanced GPU Library for General-Purpose Nonuniform FFTs	588

Parallel Machine Learning of Partial Differential Equations	698
University of Stuttgart, Germany), Neda Ebrahimi Pour (Chair of	
Simulation Techniques and Scientific Computing, University of Siegen,	
Germany), Sabine Roller (Chair of Simulation Techniques and Scientific	
Computing, University of Siegen, Germany), and Miriam Mehl (Institute	
for Parallel and Distributed Systems, University of Stuttgart,	
Germany) Improving Workload Balance of a Marine CSEM Inversion Application	704
Jessica Imlau Dagostini (Institute of Informatics, Federal University	
of Rio Grande do Sul, Brazil), Henrique Corrêa Pereira da Silva	
(Institute of Informatics, Federal University of Rio Grande do Sul,	
Brazil), Vinicius Garcia Pinto (Institute of Informatics, Federal	
University of Rio Grande do Sul, Brazil), Roberto Machado Velho (Institute of Informatics, Federal University of Rio Grande do Sul,	
Brazil), Eduardo S. L. Gastal (Institute of Informatics, Federal	
University of Rio Grande do Sul, Brazil), and Lucas Mello Schnorr	
(Institute of Informatics, Federal University of Rio Grande do Sul,	
Brazil)	
Performance Modeling and Tuning for DFT Calculations on Heterogeneous Architectures	. 714
Hadia Ahmed (Lawrence Berkeley National Laboratory, USA), David B.	
Williams-Young (Lawrence Berkeley National Laboratory, USA), Khaled Z.	
Ibrahim (Lawrence Berkeley National Laboratory, USA), and Chao Yang	
(Lawrence Berkeley National Laboratory, USA)	
Parallelization of GKV Benchmark using OpenACC	723
Makoto Morishita (Nagoya University, Japan), Satoshi Ohshima	
(Information Technology Center, Nagoya University, Japan), Takahiro	
Katagiri (Information Technology Center, Nagoya University, Japan), and Toru Nagai (Information Technology Center, Nagoya University,	
Japan)	
A Flexible Research-Oriented Framework for Distributed Training of Deep Neural Networks	730
Sergio Barrachina (Universitat Jaume I, Spain), Adrián Castelló	700
(Universitat Jaume I, Spain), Mar Catalán (Universitat Jaume I,	
Spain), Manuel F. Dolz (Universitat Jaume I, Spain), and Jose I.	
Mestre (Universitat Jaume I, Spain)	
Accelerated Polynomial Evaluation and Differentiation at Power Series in Multiple Double	
Precision	740
Jan Verschelde (University of Illinois at Chicago, USA)	
iWAPT: Automatic Performance Tuning	
111/AI 1. Automatic I enormatice I uning	
Introduction to iWAPT 2021	750

Efficient Parallel Multigrid Methods on Manycore Clusters with Double/Single Precision Computing	Evaluating I/O Acceleration Mechanisms of SX-Aurora TSUBASA Yuta Sasaki (Graduate School of Information Sciences, Tohoku University, Japan), Ayumu Ishizuka (Graduate School of Information Sciences, Tohoku University, Japan), Mulya Agung (Cyberscience Center, Tohoku University, Japan), and Hiroyuki Takizawa (Cyberscience Center, Tohoku University, Japan; Graduate School of Information Sciences, Tohoku University, Japan)	.752
A Case Study on VGG-type Networks	Computing Kengo Nakajima (Information Technology Center, The University of Tokyo/RIKEN, Japan), Takeshi Ogita (Div. of Mathematical Sciences, Tokyo Woman's Christian University, Japan), and Masatoshi Kawai	. 760
Programs	A Case Study on VGG-type Networks	770
Naruya Kitai (Graduate School of Informatics, Nagoya University, Japan), Daisuke Takahashi (Center for Computational Sciences, University of Tsukuba, Japan), Franz Franchetti (Carnegie Mellon University, USA), Takahiro Katagiri (Information Technology Center, Nagoya University, Japan), Satoshi Ohshima (Information Technology Center, Nagoya University, Japan), and Toru Nagai (Information Technology Center, Nagoya University, Japan) Improving the MPI-IO Performance of Applications with Genetic Algorithm Based Auto-Tuning 798 Ayşe Bağbaba (The High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany) and Xuan Wang (The High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany) Autotuning Benchmarking Techniques: A Roofline Model Case Study	Programs Kou Murakami (Graduate school of Information Sciences, Tohoku University, Japan), Kazuhiko Komatsu (Cyberscience Center, Tohoku University, Japan), Masayuki Sato (Graduate school of Information Sciences, Tohoku University, Japan), and Hiroaki Kobayashi (Graduate	779
Ayşe Bağbaba (The High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany) and Xuan Wang (The High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany) Autotuning Benchmarking Techniques: A Roofline Model Case Study	Naruya Kitai (Graduate School of Informatics, Nagoya University, Japan), Daisuke Takahashi (Center for Computational Sciences, University of Tsukuba, Japan), Franz Franchetti (Carnegie Mellon University, USA), Takahiro Katagiri (Information Technology Center, Nagoya University, Japan), Satoshi Ohshima (Information Technology Center, Nagoya University, Japan), and Toru Nagai (Information	789
Jacob O. Tørring (Norwegian University of Science and Technology (NTNU), Norway), Jan Christian Meyer (Norwegian University of Science and Technology (NTNU), Norway), and Anne C. Elster (Norwegian University of Science and Technology (NTNU), Norway) Scalable Performance Prediction of Irregular Workloads in Multi-phase Particle-in-Cell Applications	Ayşe Bağbaba (The High-Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany) and Xuan Wang (The High-Performance	, 798
Applications	Jacob O. Tørring (Norwegian University of Science and Technology (NTNU), Norway), Jan Christian Meyer (Norwegian University of Science and Technology (NTNU), Norway), and Anne C. Elster (Norwegian	. 806
Dimension (Gineering of Horizon, Golf)	Applications	816

SNACS: Scalable Networks for Advanced Computing Systems Workshop

Introduction to SNACS 2021 Taylor Groves (Lawrence Berkeley National Laboratory, USA), Matthew Dosanjh (Sandia National Laboratories, USA), and Ryan Grant (Sandia National Laboratories, USA)	826
SNACS 2021 Keynote	827
User Allocation for Real-Time Applications with State Sharing in Fog Computing Networks . Ryohei Sato (NTT Network Service Systems Laboratories, Japan), Hidetoshi Kawaguchi (NTT Network Service Systems Laboratories, Japan), and Yuichi Nakatani (NTT Network Service Systems Laboratories, Japan)	828
Multi-path Routing in the Jellyfish Network	832
PAISE: Parallel AI and Systems for the Edge	
Introduction to PAISE 2021	842
Addressing the Constraints of Active Learning on the Edge	845
Informed Prefetching in I/O Bounded Distributed Deep Learning	850
Performance Evaluation of Deep Learning Compilers for Edge Inference Gaurav Verma (Stony Brook University, USA), Yashi Gupta (Stony Brook University, USA), Abid M. Malik (Brookhaven National Laboratory, USA), and Barbara Chapman (Stony Brook University, USA; Brookhaven National Laboratory, USA)	858
DataVinci: Proactive Data Placement for Ad-Hoc Computing Martin Breitbach (University of Mannheim, Germany), Janick Edinger (University of Hamburg, Germany), Dominik Schäfer (University of Mannheim, Germany), and Christian Becker (University of Mannheim, Germany)	866
Pilot-Edge: Distributed Resource Management Along the Edge-to-Cloud Continuum	874

INT Based Network-Aware Task Scheduling for Edge Computing	879
Performance Comparison for Scientific Computations on the Edge via Relative Performance Aravind Sankaran (RWTH Aachen University, Germany) and Paolo Bientinesi (Umea Universitet, Sweden)	887
RADR: Resource Arbitration for Dynamic Runtimes	
Introduction to RADR 2021 Pete Beckman (Argonne National Laboratory, USA; Northwestern University, USA), Emmanuel Jeannot (TADaaM Team, Inria, France), and Swann Perarnau (Argonne National Laboratory, USA)	.896
Dynamic Computing Resources Allocation for Multiple Deep Learning Tasks	899
ScaDL: Scalable Deep Learning over Parallel And Distributed Infrastructures	
Message from the ScaDL 2021 Workshop Chairs	906
ScaDL 2021 Invited Speaker-1	907
ScaDL 2021 Invited Speaker-2 Torsten Hoefler (ETH Zurich, Switzerland)	908
ScaDL 2021 Invited Speaker-3	909
ScaDL 2021 Invited Speaker-4	910
ScaDL 2021 Invited Speaker-5 Rania Khalaf (IBM Research, USA)	911
ScaDL 2021 Invited Speaker-6	912
A Distributed Multi-GPU System for Large-Scale Node Embedding at Tencent	913
Scaling Single-Image Super-Resolution Training on Modern HPC Clusters: Early Experiences Quentin Anthony (The Ohio State University, USA), Lang Xu (The Ohio State University, USA), Hari Subramoni (The Ohio State University, USA), and Dhabaleswar K. Panda (The Ohio State University, USA)	. 923

Distributed Deep Learning Using Volunteer Computing-Like Paradigm
Ex-NNQMD: Extreme-Scale Neural Network Quantum Molecular Dynamics
Training EfficientNets at Supercomputer Scale: 83% ImageNet Top-1 Accuracy in One Hour 947 Arissa Wongpanich (University of California, Berkeley, USA; Google Research, USA), Hieu Pham (Google Research, USA), James Demmel (University of California, Berkeley, USA), Mingxing Tan (Google Research, USA), Quoc Le (Google Research, USA), Yang You (National University of Singapore, Singapore), and Sameer Kumar (Google Research, USA)
Performance Analysis of Deep Learning Workloads on a Composable System
HPS: High-Performance Storage
Message from the HPS 2021 Workshop Chairs 955 Gabriel Antoniu (Inria, France) and Marc Snir (University of Illinois at Urbana Champaign, USA)
HPS 2021 Keynote Speaker
HPS 2021 Invited Speaker-1
HPS 2021 Invited Speaker-2

Facilitating Staging-Based Unstructured Mesh Processing to Support Hybrid In-Situ Workflows	
Zhe Wang (Rutgers University, USA), Pradeep Subedi (Rutgers University, USA), Matthieu Dorier (Argonne National Laboratory, USA), Philip E. Davis (Rutgers University, USA), and Manish Parashar (University of Utah, USA)	
Exploring MPI Collective I/O and File-per-Process I/O for Checkpointing a Logical Inference Task	
Ke Fan (University of Alabama at Birmingham, USA), Kristopher Micinski (Syracuse University, USA), Thomas Gilray (University of Alabama at Birmingham, USA), and Sidharth Kumar (University of Alabama at Birmingham, USA)	
ParSocial: Parallel and Distributed Processing for Computational Socia Systems	1
Message from the ParSocial 2021 Workshop Co-Chairs	
Memory Efficient Edge Addition Designs for Large and Dynamic Social Networks	
Load Balancing Schemes for Large Synthetic Population-Based Complex Simulators	
Application of Distributed Agent-Based Modeling to Investigate Opioid Use Outcomes in Justice Involved Populations	
Shared-Memory Scalable k-Core Maintenance on Dynamic Graphs and Hypergraphs	

P-Flee: An Efficient Parallel Algorithm for Simulating Human Migration	1008
Petros Anastasiadis (Computing Systems Laboratory, National Technical	
University of Athens, Greece), Sergiy Gogolenko (High Performance	
Computing Center Stuttgart, Germany), Nikela Papadopoulou (Computing	
Systems Laboratory, National Technical University of Athens, Greece),	
Marcin Lawenda (Poznan Supercomputing and Networking Center, Poland),	
Hamid Arabnejad (Brunel University London, UK), Alireza Jahani (Brunel	
University London, UK), Imran Mahmood (Brunel University London, UK),	
and Derek Groen (Brunel University London, UK)	
•	

IPDPS 2021 PhD Forum

Author Index