2021 IEEE 21st Annual Wireless and Microwave Technology **Conference (WAMICON 2021)**

Sand Key, Florida, USA 28 – 29 April 2021

IEEE Catalog Number: CFP21WMC-POD **ISBN:**

978-1-7281-5177-9

Copyright © 2021 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP21WMC-POD
ISBN (Print-On-Demand):	978-1-7281-5177-9
ISBN (Online):	978-1-7281-5176-2

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

WAMICON 2021 IEEE Wireless & Microwave Technology Conference Papers List

Filename (.pdf)	Title/Authors
W1A-1	Novel Synthesis Methodology of Lowpass Networks Comprising Generalized Cascaded Quadruplets1 Wael Fathelbab
W1A-2	Novel Synthesis Methodology of Lowpass Networks Comprising Generalized Cascaded Trisections5 Wael Fathelbab
W1A-3	Radiation Shielding Effectiveness of Additively Manufactured Antenna-on- Package for Space Environments9 Carlos R. Mejias-Morillo, Sabrina Yepez, Blake Roberts, Hugo Castillo, and Eduardo A. Rojas-Nastrucci
W1A-4	Tunable S-band Elliptic Bandpass Filter With Constant Absolute Bandwidth13 Hailing Yue
W1A-5	A Low-Loss 1-4 GHz Optically-Controlled Silicon Plasma Switch17 Alden Fisher, Zach Vander Missen, Abbas Semnani, and Dimitrios Peroulis
W1A-6	High Selectivity Low-Loss Tunable Bandpass Filter with Transmission Zeros Control Using Staircase Resonators21 Abdulrahman Widaa, Chang Jiang You, and Mohammed Awad
W1B-1	Channel Emulation for the Characterization of Wearable RFID Systems25 Md Abu Saleh Tajin, Marko Jacovic, William Mongan, Kapil R. Dandekar
W1B-2	Detection of Harmonic Micro-Doppler Signatures Using Passive RF Tags and Harmonic Radar30 Neda Nourshamsi, Stavros Vakalis, M.I. Mohd Ghazali, Saran Karuppuswami, Prem Chahal, and Jeffrey Nanzer
W1B-3	Miniature K-Band Radar for Agricultural Remote Sensing34 Garrett Peterson and William Kuhn

W1B-4	Estimation of Background Medium's Properties in Microwave Holographic Imaging38
	Hailun Wu and Reza K. Amineh
W1B-5	Optimized and Miniaturized Conformal Strongly Coupled Magnetic Resonance Systems42
	Juan Barreto, Abdul-Sattar Kaddour, and Stavros V. Georgakopoulos
W1B-6	An Ultra-Wideband Origami Microwave Absorber46
	Akash Biswas, Constantinos L. Zekios, and Stavros V. Georgakopoulos
W2A-1	Accurate Nonlinear GaN HEMT Simulations from X- to Ka-Band using a Single ASM-HEMT ModelN/A
	Nicholas C. Miller, Neil A. Moser, Robert C. Fitch, James K. Gillespie, Kyle J. Liddy, Dennis E. Walker, Jr., Andrew J. Green, Kelson D. Chabak, Michael Elliott, Ryan Gilbert, Richard Young, Elizabeth Werner, Miles Lindquist, and Patrick Roblin
W2A-2	A Fully-Integrated Band-Switchable CMOS Power Amplifier for Wireless Applications50
	S. Babak Hamidi, Suman Saripalli, Debasis Dawn
W2A-3	A 60 GHz High Gain Narrow-Band 150 nm InGaAs based Power Amplifier54 Soumyasanta Laha, Savas Kaya
W2A-4	Analog Predistortion of K-band GaN for 10W Linear Output Power and 30% Power Added Efficiency58
	Morgan J Chen, Loren Ralph, and Eddie Rodgers
W2A-5	Effects of Electromagnetic Wave Propagations in Large-Signal Analysis of Millimeter-Wave Transistors62
	Amirreza Ghadimi Avval, Soheil Nouri, and Samir M. El-Ghazaly
W2B-1	On the bending effects of a printed 4x4 antenna array66 John E. Rogers
W2B-2	An Origami-Inspired Foldable Reflectarray on a Straight-Major Square-Twist Pattern72
	Antonio Jose Rubio, Abdul-Sattar Kaddour, Stavros V. Georgakopoulos, Nathan Brown, Collin Ynchausti, Larry Howell, and Spencer Magleby

W2B-3	Board-Integrated Tunable Bandpass Filter with Wide Stopband for Phased Array AntennasN/A
	Gokhan Ariturk, Nawaf R. Almuqati, Shahrokh Saeedi, and Hjalti H. Sigmarsson
W2B-4	Parallelly and Diagonally Placed Meander-Line Slot Resonators for Mutual Coupling Reduction in a 2x2 Patch Array Antenna76 Hyunho Cho and Yong-Kyu Yoon
W2B-5	A Physically Reconfigurable 1 × 8 Monolithic Thick Origami Array81 Muhammad Hamza, Constantinos L. Zekios, and Stavros V. Georgakopoulos
W3A-1	A Wide Scanning-Angle mmWave AiP Antenna Module for 5G Portable Terminals84 Jiayou Xu, Yuanqing Chen, Yu-Jiun Ren, Yong Luo, and Guangli Yang
W3A-2	Influence of RF Group Delay on the Performance of FMCW Automotive Radar Sensor88 Arsalan Haider, Abduelkadir Eryildirim, Matthias Thumann, Thomas Zeh, and Stefan-Alexander Schneider
W3A-3	A G-Band Reconfigurable Waveguide-Based Bandstop Filter Enabled by High- Performance Optically Controlled RF Switches94 Peizhao Li, Yu Shi, Yijing Deng, Patrick Fay, and Lei Liu
W3A-4	Reconfigurable and Deployable Miura-Ori RA Analysis for Satellite Applications98 Carlos A. Velez, Abdul-Sattar Kaddour, Stavros V. Georgakopoulos, Diana S. Bolanos, Collin Ynchausti, Spencer Magleby, and Larry L. Howell
W3A-5	Design of a mm-Wave Double-Sided Substrate Blass Matrix Beamforming Network101 Dimitrios I. Lialios, Constantinos L. Zekios, and Stavros V. Georgakopoulos
R1A-1	Additive Manufactured, On-Package 2.4 GHz Tripolar Antenna System for Cluttered Channels105 Ramiro A. Ramirez, Thomas M. Weller, Marcia Golmohamadi, Jeff Frolik, and James Jamison
R1A-2	Phase Measurement and Correction for Software Defined Radio Systems109 Evan Fennelly and Jeff Frolik
R1A-3	Multiband Active Antenna Tuner for Cellular IoT ApplicationsN/A David Vye

R1A-4	Entropy Based Exploration in Cognitive Radio Networks using Deep Reinforcement Learning for Dynamic Spectrum Access114 Michael J. Liston and Kapil R. Dandekar
R1A-5	Dynamically Reconfigurable Direction-Finding Antenna Array for Unmanned Arial Systems119 CDT Josiah Park, CDT Nolan Pearce, Abon Ackie, Frank Vassallo, and Kate J. Duncan
R1A-6	Supportive Image Analysis Solution based into Cloud and Edge ComputingN/A Anderson Carvalho, Niall O' Mahony, Lenka Krpalkova, Sean Campbell, Joseph Walsh, and Pat Doody
R1B-1	A Compact Digital Low-IF Dual-PLL Doppler Radar for Remote Vital Sign Detection124 Xiaonan Jiang, Xiaomeng Gao, Heng Zhao, Hong Hong, and Xiaoguang Liu
R1B-2	Highly Efficient Wireless Power Transfer Systems for Wearable and Implantable Devices128 Juan Barreto, Abdul-Sattar Kaddour, and Stavros V. Georgakopoulos
R1B-3	A Software Defined Radio Interrogator for Passive Harmonic Transponders132 Tim Laracy and Jeff Frolik
R1B-4	Microwave Imaging System for Soft Tissue Imaging of Cancer Patients136 Nesreen Alsbou, Kyle Espinosa, Nathaniel Ashley, Nathan Wickware, and Imad Ali
R1B-5	Using Standing Waves to Boost RF-DC Sensitivity in PCB Voltage Multiplier Circuit to -15dBm (1.9V DC)140 Rushi Vyas
R1B-6	Feasibility of Full Duplex Communication for Wireless Network on Chips with OOK Modulation143 Soumyasanta Laha and Simran Kaur Sidhu
R2A-1	Toward the Design of a Reconfigurable Liquid-Metal Pixel Array148 Kareem S. Elassy, Kent J. Sarabia, Wayne A. Shiroma, and Aaron T. Ohta
R2A-2	Novel Synthesis Methodology of Lowpass Networks Comprising Generalized Cascaded Box Configurations152 Wael Fathelbab

R2A-3	Novel Acoustic Wave Networks Comprising Resonators Achieving Prescribed Coupling156 Wael M. Fathelbab
R2A-4	Photonic Curing of mm-Wave Coplanar Waveguides for Conductor Loss Enhancement160
	Sam LeBlanc, Kenneth Church, and Eduardo A. Rojas-Nastrucci
R2B-1	Micro-machined 3D Cube Antenna for X-Band Communication ICs163 Yuxin Wang, Han-yu Tsao, Noah Sauber, Robert M. Weikle, Arthur W. Lichtenberger, and N. Scott Barker
R2B-2	A Novel Biosensor for Non-invasive Blood Glucose Measurement Based on Double Square Complimentary Split Ring ResonatorN/A Esraa Mansour, Ahmed Allam, and Adel Abdel-Rahman
R2B-3	An S-band Automatically Tunable Bandpass Filter Based on a Machine Learning Approach166 Pintu Adhikari, Kevin Xia, Garrett Shaffer, Bruno Ribeiro, and Dimitrios Peroulis
R2B-4	Adaptive Beamforming for mmWave 5G MIMO Antennas170 Sunday Enahoro, Dr. Sunday C. Ekpo, Mfonobong Charles Uko, Arslam Altaf, Umm-E-Haya Ansari, and Muazzam Zafar
R4A-1	Building Material Attenuations at 5 GHz and at mmWave Frequencies 30 GHz and 90 GHz175 David W. Matolak, Mohanad Mohsen, and Jinwen Liu
R4A-2	Domain Decomposition Based Artificial Neural Networks (ANNs) Modeling of Acoustic Wave Resonators and Filters179 Mohammad Almalkawi and Josh Caron
R4A-3	A Synthesis View to Dual-Band Responses With Parallel-Connected Acoustic Wave Filters183 Eloi Guerrero, Jordi Verdú, and Pedro de Paco
R4A-4	Collaborative Edge Processing by mmWave Access Providing UAVs187 Tien Pham Van and Nam Nguyen Trung

R4A-5	5G enabled Mobile Operating Hospital and Emergency Care Service192 Umm-e-Haya Ansari, Sunday C. Ekpo, Mfonobong C. Uko, Arslan Altaf, Muazzam Zafar, Sunday Enahoro, Osmond A. Okpalugo, and Olugbenga Akinkunmi Sowande
R4B-1	Plasma Switch-Based Technology for High-Speed and High-Power Impedance Tuning198 Zach Vander Missen, Sergey Macheret, Abbas Semnani, and Dimitrios Peroulis
R4B-2	6-to-13 GHz Voltage Controlled Oscillator with 7 dBm Output Power in 22 nm FD-SOI202 Laszlo Szilagyi, Zoltan Tibenszky, Corrado Carta, Ronny Henker, and Frank Ellinger
R4B-3	A Broadband, High Dynamic Range DPST Switch and IF Amplifier IC206 M. Sakalas, N. Joram, F. Protze, and F. Ellinger
R4B-4	Dual-Band 2:1 LC-tank Injection-Locked Frequency Divider Using Distributed Transformer210 Wen-Cheng Lai, Sheng-Lyang Jang, and Hsien-Jen Chou
R4B-5	Modeling and Simulation of Small Satellite Optical Communication System based on PathWave System Design214 Bangda Zhou and Eduardo A. Rojas-Nastrucci