2020 International Conference on **Data Mining Workshops** (ICDMW 2020)

Virtual Conference 17-20 November 2020

Pages 1-471

IEEE Catalog Number: CFP2056B-POD ISBN:

978-1-7281-9013-6

Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP2056B-POD

 ISBN (Print-On-Demand):
 978-1-7281-9013-6

 ISBN (Online):
 978-1-7281-9012-9

ISSN: 2375-9232

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA

Phone: (845) 758-0400 Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2020 International Conference on Data Mining Workshops (ICDMW) ICDMW 2020

Table of Contents

Message from the ICDM 2020 General Chairs xxi
Message of the Program Co-Chairs xxii
Message from the IEEE ICDM Workshops Chairs xxiv Organizing Committee xxv
The IEEE ICDM 2020 Workshops xxvi
Giuseppe Di Fatta (University of Reading), Victor Sheng (Texas Tech
University), and Alfredo Cuzzocrea (University of Calabria)
Sentiment Elicitation from Natural Text for Information Retrieval and Extraction (SENTIRE)
Sentiment is an Attitude not a Feeling
One Belt, One Road, One Sentiment? A Hybrid Approach to Gauging Public Opinions on the New Silk Road Initiative
Jonathan Kevin Chandra (Nanyang Technological University), Erik Cambria (Nanyang Technological University), and Andrea Nanetti (Nanyang Technological University)
COAL: Convolutional Online Adaptation Learning for Opinion Mining
Helping Users Discover Perspectives: Enhancing Opinion Mining with Joint Topic Models 23 Tim Draws (TU Delft), Jody Liu (TU Delft), and Nava Tintarev (TU Delft)

MEET: A Method for Embeddings Evaluation for Taxonomic Data
Textual Lyrics Based Emotion Analysis of Bengali Songs
Understanding the Personality of Contributors to Information Cascades in Social Media in Response to the COVID-19 Pandemic
Application of NLP to Determine the State of Issues in Bug Tracking Systems
WhoSNext: Recommending Twitter Users to Follow Using a Spreading Activation Network Based Approach
Integration of Fuzzy and Deep Learning in Three-Way Decisions
IEEE International Workshop on Data Mining for Service (DMS2020)
CAMTA: Causal Attention Model for Multi-touch Attribution

Deal Closure Prediction Based on User's Browsing Behaviour of Sales Content	87
An Experimental Evaluation of Data Classification Models for Credibility Based Fake News Detection	93
Amit Neil Ramkissoon (The University of the West Indies, St Augustine) and Shareeda Mohammed (The University of the West Indies, St Augustine)	
Synthetic Data by Principal Component Analysis	. 101
Gaussian Process Bandits for Online Influence Maximization	106
How Shoppers Walk and Shop in a Supermarket	114
ICDM NeuRec Workshop 2020	
A Hierarchical Knowledge and Interest Propagation Network for Recommender Systems Qinghong Chen (School of Software, Beihang University), Huobin Tan (School of Software, Beihang University), Guangyan Lin (School of Software, Beihang University), and Ze Wang (School of Software, Beihang University)	. 119
Scenario-Aware and Mutual-Based Approach for Multi-scenario Recommendation in E-Comm	
Yuting Chen (Zhejiang University), Yanshi Wang (Alibaba Group), Yabo Ni (Alibaba Group), An-Xiang Zeng (Alibaba Group), and Lanfen Lin (Zhejiang University)	. 127
HybridGNN-SR: Combining Unsupervised and Supervised Graph Learning for Session-Based Recommendation	136
Revenue Maximization using Multitask Learning for Promotion Recommendation	. 144
Attentive-Feature Transfer Based on Mapping for Cross-Domain Recommendation	. 151

A Recommender Algorithm: Gradient Recurrent Neural Network Applied to Yang-Baxter-Like Equation	159
Ying Liufu (School of Information Science and Engineering, Lanzhou University, Lanzhou, China), Long Jin (School of Information Science and Engineering, Lanzhou University, Lanzhou, China), Shuai Li (School of Information Science and Engineering, Lanzhou University, Lanzhou, China), Mei Liu (School of Information Science and Engineering, Lanzhou University, Lanzhou, China), and Hongjun Yang (The State Key Laboratory of Management and Control for Complex System, Institute of Automation, Chinese Academy of Sciences, Beijing, China)	
Attentive Autoencoders for Multifaceted Preference Learning in One-Class Collaborative Filtering	165
Zheda Mai (University of Toronto), Ga Wu (Department of Mechanical & Industrial Engineering, University of Toronto, Canada), Kai Luo (Department of Mechanical & Industrial Engineering, University of Toronto, Canada), and Scott Sanner (Department of Mechanical & Industrial Engineering, University of Toronto, Canada)	102
GCMCSR: A New Graph Convolution Matrix Complete Method with Side-Information Reconstruction	173
Kun Niu (School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications), Yicong Yu (School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications), Xipeng Cao (School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications), and Chao Wang (School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications)	
μ-cf2vec: Representation Learning for Personalized Algorithm Selection in Recommender	
Systems	181
MARS-Gym: A Gym Framework to Model, Train, and Evaluate Recommender Systems for	
Marketplaces	189
Enhancing Multi-factor Friend Recommendation in Location-Based Social Networks	198
Efficient Distributed MST Based Clustering for Recommender Systems Ahmad Shahzad (University of Liverpool, U.K.) and Frans Coenen (School of Electrical Engineering and Computer Science, University of Liverpool, U.K)	206
Interactive Knowledge Graph Attention Network for Recommender Systems Li Yang (Tongji University), Shijia E (Tencent), Shiyao Xu (Tongji University), and Yang Xiang (Tongji University)	211

Cross-Session Aware Temporal Convolutional Network for Session Based Recommendation 220 Rui Ye (Meituan), Qing Zhang (Meituan), and Hengliang Luo (Meituan)
Hybrid Learning with Teacher-Student Knowledge Distillation for Recommenders
DGTN: Dual-Channel Graph Transition Network for Session-Based Recommendation
Large-scale Industrial Time Series Analysis (LITSA 2020)
An Examination of the State-of-the-Art for Multivariate Time Series Classification
Boosting Algorithms for Delivery Time Prediction in Transportation Logistics
Uncertain Time Series Classification with Shapelet Transform
Temporally-Reweighted Dirichlet Process Mixture Anomaly Detector
An Improved Wide-Kernel CNN for Classifying Multivariate Signals in Fault Diagnosis
The 8th ICDM Workshop on High Dimensional Data Mining (HDM'20)
Accelerated SGD for Tensor Decomposition of Sparse Count Data

Individualized Context-Aware Tensor Factorization for Online Games Predictions	. 292
Towards an Internal Evaluation Measure for Arbitrarily Oriented Subspace Clustering Daniyal Kazempour (Ludwig-Maximilians-University Munich), Peer Kröger (Ludwig-Maximilians-University Munich), and Thomas Seidl (Ludwig-Maximilians-University Munich)	.300
You see a set of Wagons - I see one Train: Towards a Unified view of Local and Global Arbitrarily Oriented Subspace Clusters	. 308
I Fold you so! An Internal Evaluation Measure for Arbitrary Oriented Subspace Clustering Daniyal Kazempour (Ludwig-Maximilians-University Munich), Anna Beer (Ludwig-Maximilians-University Munich), Peer Kröger (Ludwig-Maximilians-University Munich), and Thomas Seidl (Ludwig-Maximilians-University Munich)	. 316
Efficient Distance-Based Global Sensitivity Analysis for Terrestrial Ecosystem Modeling Dan Lu (Oak Ridge National Laboratory) and Daniel Ricciuto (Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA)	. 324
DDIF: Deep Data Intelligence for Finance 2020	
Exploring the Use of Data at Multiple Granularity Levels in Machine Learning-Based Stock	222
Trading	. 333
Stock Price Prediction by Using Hybrid Sequential Generative Adversarial Networks	. 341
Analysis of Multivariate Time Series Predictability Based on their Features	. 348
AttentionFM: Incorporating Attention Mechanism and Factorization Machine for Credit	256
Scoring Ying Liu (School of Computer Science and Technology, University of Chinese Academy of Sciences), Wei Wang (School of Computer Science and Technology, University of Chinese Academy of Sciences), Tianlin Zhang (School of Computer Science and Technology, University of Chinese Academy of Sciences), and Zhenyu Cui (School of Computer Science and Technology, University of Chinese Academy of Sciences)	. 356
A Federated Learning Based Approach for Loan Defaults Prediction	. 362

A Short-Term Cryptocurrency Price Movement Prediction Using Centrality Measures	369
Nonlinear Tensor Completion Using Domain Knowledge: An Application in Analysts' Earnings Forecast Ajim Uddin (New Jersey Institute of Technology), Xinyuan Tao (New Jersey Institute of Technology), Chia-Ching Chou (Central Michigan University), and Dantong Yu (New Jersey Institute of Technology)	377
Wavelet Denoised-ResNet CNN and LightGBM Method to Predict Forex Rate of Change	385
ICDM Workshop on Continual Learning and Adaptation for Tim Evolving Data (CLEATED 2020)	e
An Unsupervised Methodology for Online Drift Detection in Multivariate Industrial Datasets Sarah Klein (Data and Al Competence Lab (EluciDATA Lab), Sirris) and Mathias Verbeke (Data and Al Competence Lab (EluciDATA Lab), Sirris)	392
Learning Student Interest Trajectory for MOOC Thread Recommendation Shalini Pandey (University of Minnesota), Andrew Lan (University of Massachusetts Amherst, Amherst, MA), George Karypis (University of Minnesota, Twin Cities, Minnesota, USA), and Jaideep Srivastava (University of Minnesota, Twin Cities, Minnesota, USA)	400
TEDD: Robust Detection of Unstable Temporal Features	408
Restructuring of Hoeffding Trees for Trapezoidal Data Streams	416
MIR_MAD: An Efficient and On-Line Approach for Anomaly Detection in Dynamic Data Stream 424 Chang How Tan (Monash University), Vincent CS Lee (Monash University), and Mahsa Salehi (Monash University)	
LbR: A New Regression Architecture for Automated Feature Engineering Meng Wang (Tongji University), Zhijun Ding (The Department of Computer Science and Technology, Tongji University, Shanghai, China), and Meiqin Pan (School of Business and Management Shanghai International Studies University, Shanghai, China)	432
Pelican: Continual Adaptation for Phishing Detection	440

Yunsheng Pang (The University of Melbourne, Australia), Feiyu Chen (Chongqing Normal University, China), Sheng Huang (Chongqing University, China), Yongxin Ge (Chongqing University, China), Wei Wang (Chongqing University, China), and Taiping Zhang (Chongqing University, China)

1st ICDM Workshop on Deep Learning for Cyber Threat Intelligence (DL-CTI)

A Deep Neural Network Approach to Tracing Paths in Cybersecurity Investigations	172
Deep Contextualized Word Embedding for Text-Based Online User Profiling to Detect Social Bots on Twitter	180
Linking Personally Identifiable Information from the Dark Web to the Surface Web: A Deep Entity Resolution Approach	188
Using Deep Generative Models to Boost Forecasting: A Phishing Prediction Case Study	196
Getting Passive Aggressive About False Positives: Patching Deployed Malware Detectors5 Edward Raff (Booz Allen Hamilton), Bobby Filar (Elastic), and James Holt (Laboratory for Physical Sciences)	506
A Literature Review on Mining Cyberthreat Intelligence from Unstructured Texts	516

Deep Learning for Internet of Things (DL-IoT 2020)

Learning Latent Correlation of Heterogeneous Sensors Using Attention Based Temporal Convolutional Network
CrowdDepict: Know What and How to Generate Personalized and Logical Product Description using Crowd Intelligence
Anomaly Detection of Periodic Multivariate Time Series Under High Acquisition Frequency Scene in IoT
A Two-Stream Network for Driving Hand Gesture Recognition
1st International Workshop on Multi-Source Data Mining (MSDM)
Ensemble Node Embeddings using Tensor Decomposition: A Case-Study on DeepWalk561 Jia Chen (University of Texas Rio Grande Valley) and Evangelos Papalexakis (University of California Riverside)

Partially Shared Semi-Supervised Deep Matrix Factorization with Multi-view Data	564
SYNC: A Copula Based Framework for Generating Synthetic Data from Aggregated Sources Zheng Li (Arima Inc., Canada), Yue Zhao (Carnegie Mellon University), and Jialin Fu (University of Toronto)	571
Deep Cooperative Reconstruction with Security Constraints in Multi-view Environments Denis Maurel (ISEP, France), Sylvain Lefebvre (Toyota Motor Corporation, Tokyo, Japan), and Jérémie Sublime (ISEP, France)	579
Mining Heterogeneous Data for Formulation Design	589
Mining Heterogeneous Associations from Pediatric Cancer Data by Relational Concept Analysis	597
Towards a Flexible Embedding Learning Framework	605
The 8th Workshop on Data Mining in Biomedical Informatics at Healthcare (DMBIH'20)	nd
Classification of Dementia Associated Disorders Using EEG Based Frequent Subgraph Technique	613

Open-Ended Survey Questions	
Dijana Kosmajac (Dalhousie University), Kirstie Smith (Department of Community Health and Epidemiology, Dalhousie University), Vlado Keselj (Dalhousie University), and Susan Kirkland (Department of Community Health and Epidemiology, Dalhousie University)	
Super Learning with Repeated Cross Validation	529
Persistent Homology on Streaming Data	i36
Human-in-the-Loop Language-Agnostic Extraction of Medication Data from Highly Unstructure Electronic Health Records	d 544
How Much Does It Hurt: A Deep Learning Framework for Chronic Pain Score Assessment 6 Yun Zhao (University of California, Santa Barbara), Franklin Ly (Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA), Qinghang Hong (Department of Computer Science, University of California, Santa Barbara, CA, USA), Zhuowei Cheng (Department of Computer Science, University of California, Santa Barbara, CA, USA), Tyler Santander (Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA), Henry T. Yang (Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA), Paul K. Hansma (Department of Physics, University of California, Santa Barbara, CA, USA), and Linda Petzold (Department of Computer Science, University of California, Santa Barbara, CA, USA)	551
3rd Utility-Driven Mining and Learning (UDML 2020)	
Insights from Urban Sensing Data: From Chaos to Predicted Congestion Patterns	561

Tzung-Pei Hong (National University of Kaohsiung), Meng-Ping Ku (National Sun Yat-Sen University), Wei-Ming Huang (National Sun Yat-Sen University), Shu-Min Li (National Sun Yat-Sen University), and Jerry Chun-Wei Lin (Norway University of Applied Science)	669
TKC: Mining Top-K Cross-Level High Utility Itemsets	673
Sample-Rank: Weak Multi-objective Recommendations Using Rejection Sampling	683
Efficient Mining of Non-Dominated High Quantity-Utility Patterns	690
The 4th International Workshop on Big Data Analysis for Sm	art
Energy (BigData4SmartEnergy 2020)	iait
Energy (BigData4SmartEnergy 2020) Scalable Distributed Pivot Analysis over Massive Big Data: Models, Paradigms, New Advancements	696
Energy (BigData4SmartEnergy 2020) Scalable Distributed Pivot Analysis over Massive Big Data: Models, Paradigms, New Advancements Alfredo Cuzzocrea (University of Calabria, Italy) Precipitation Nowcasting Using Grid-Based Data in South Korea Region	696
Energy (BigData4SmartEnergy 2020) Scalable Distributed Pivot Analysis over Massive Big Data: Models, Paradigms, New Advancements Alfredo Cuzzocrea (University of Calabria, Italy) Precipitation Nowcasting Using Grid-Based Data in South Korea Region ChangHwan Kim (KAIST) and Se-Young Yun (KAIST) User Authentication Method using FIDO Based Password Management for Smart Energy Environment Hyunjin Kim (Dept. of Computer Science & Engineering Chungnam National University, Daejeon, Korea), Dongseop Lee (Dept. of Computer Science & Engineering Chungnam National University), and Jaecheol Ryou (Dept. of	696 701 707
Scalable Distributed Pivot Analysis over Massive Big Data: Models, Paradigms, New Advancements Alfredo Cuzzocrea (University of Calabria, Italy) Precipitation Nowcasting Using Grid-Based Data in South Korea Region ChangHwan Kim (KAIST) and Se-Young Yun (KAIST) User Authentication Method using FIDO Based Password Management for Smart Energy Environment Hyunjin Kim (Dept. of Computer Science & Engineering Chungnam National University, Daejeon, Korea), Dongseop Lee (Dept. of Computer Science & Engineering Chungnam National University), and Jaecheol Ryou (Dept. of Computer Science & Engineering Chungnam National University) Electric Energy Demand Forecasting with Explainable Time-Series Modeling	701 707 711 ud

SIPA: A Simple Framework for Efficient Networks	729
Data Analysis and Processing for Spatio-Temporal Forecasting	737
DQN-Based Join Order Optimization by Learning Experiences of Running Queries on Spark SQ 740 Kyeong-Min Lee (Chungnam National University), InA Kim (Chungnam National University), and Kyu-Chul Lee (Chungnam National University))L
Anomaly Detection and Visualization for Electricity Consumption Data	743
Design of Neural Network-Based Boost Charging for Reducing the Charging Time of Li-ion Battery Sue Hyang Lim (Naval Force Analysis Test&Evaluation Group, R.O.K Navy), Seon Hyeog Kim (School of Electrical and Electronic Engineering, Yonsei University), Hyeong Min Lee (School of Electrical and Electronic Engineering, Yonsei University), Si Joong Kim (School of Electrical and Electronic Engineering, Yonsei University), and Yong-June Shine (School of Electrical and Electronic Engineering, Yonsei University)	. 750
Learning Disentangled Representation of Residential Power Demand Peak via Convolutional-Recurrent Triplet Network Hyung-Jun Moon (Department of Computer Science), Seok-Jun Bu (Department of Computer Science), and Sung-Bae Cho (Graduate School of Artificial Intelligence)	757
Explainable Anomaly Detection for District Heating Based on Shapley Additive Explanations Sungwoo Park (Korea University), Jihoon Moon (Korea University), and Eenjun Hwang (Korea University)	762
International Workshop on Mining and Learning in the Legal Domain (MLLD-2020)	
Unsupervised Extraction of Workplace Rights and Duties from Collective Bargaining Agreements Elliott Ash (ETH Zurich), Jeff Jacobs (Columbia University), Bentley MacLeod (Columbia University), Suresh Naidu (Columbia University), and Dominik Stammbach (ETH Zurich)	. 766
Tasks Performed in the Legal Domain through Deep Learning: A Bibliometric Review (1987-2020)	775

Immigration Document Classification and Automated Response Generation	82
Building Knowledge Graphs of Homicide Investigation Chronologies	90
Using Unlabeled Data for US Supreme Court Case Classification	99
15th International Workshop on Spatial and Spatiotemporal Da Mining (SSTDM-20)	ta
Virtual Sensing of Temperatures in Indoor Environments: A Case Study	05
Predictive Nonlinear Modeling by Koopman Mode Decomposition	11
Detecting Dynamic Critical Links within Large Scale Network for Traffic State Prediction	20
Deep Learning-Based Critical Infrastructure Simulation Model for Disaster Monitoring	28
IncrLearn Incremental classification and clustering, concept dri novelty detection in big/fast data context	ft
Rebuilding Trust in Active Learning with Actionable Metrics	36

ncremental Rebalancing Learning on Evolving Data Streams	344
Kennard-Stone Balance Algorithm for Time-Series Big Data Stream Mining	351
Batch Mode Active Learning for Individual Treatment Effect Estimation	859
Multi-class Imbalanced Semi-Supervised Learning from Streams through Online Ensembles 8 Parsa Vafaie (University of Ottawa), Herna Viktor (University of Ottawa), and Wojtek Michalowski (University of Ottawa)	367
Shujie Yin (Key Laboratory of the Ministry of Education for Embedded System and Service Computing, Shanghai Electronic Transactions and Information Service Collaborative Innovation Center, Tongji University), Guanjun Liu (Key Laboratory of the Ministry of Education for Embedded System and Service Computing, Shanghai Electronic Transactions and Information Service Collaborative Innovation Center, Tongji University), Zhenchuan Li (Key Laboratory of the Ministry of Education for Embedded System and Service Computing, Shanghai Electronic Transactions and Information Service Collaborative Innovation Center, Tongji University), Chungang Yan (Key Laboratory of the Ministry of Education for Embedded System and Service Computing, Shanghai Electronic Transactions and Information Service Collaborative Innovation Center, Tongji University), and Changjun Jiang (Key Laboratory of the Ministry of Education for Embedded System and Service Computing, Shanghai Electronic Transactions and Information Service Collaborative Innovation Center, Tongji University)	875
Giacomo Ziffer (Politecnico di Milano, Milan, Italy), Alessio Bernardo (Politecnico di Milano, Milan, Italy), Emanuele Della Valle (Politecnico di Milano, Milan, Italy), and Albert Bifet (University of Waikato, LTCI, Télécom Paris Institut Polytechnique de Paris)	883
Blockchain Systems for Decentralized Mining (BSDM 2020)	
Blockchain Applications to Combat the Global Trade of Falsified Drugs	890

TrustedChain: A Blockchain-Based Data Sharing Scheme for Supply Chain
Cache-Based Optimization for Block Commit of Hyperledger Fabric
Data Management System Based on Blockchain Technology for Agricultural Supply Chain 907 Chenxue Yang (Agricultural Information Institute, China Academy of Agricultural Sciences) and Zhiguo Sun (Agricultural Information Institute, China Academy of Agricultural Sciences)
Deep Learning for Knowledge Transfer (DLKT 2020)
Deep Learning for Knowledge Transfer (DLKT 2020) G-SimCLR: Self-Supervised Contrastive Learning with Guided Projection via Pseudo Labelling 912 Souradip Chakraborty (Walmart Labs), Aritra Roy Gosthipaty (Netaji Subhash Engineering College), and Sayak Paul (PylmageSearch)
G-SimCLR: Self-Supervised Contrastive Learning with Guided Projection via Pseudo Labelling. 912 Souradip Chakraborty (Walmart Labs), Aritra Roy Gosthipaty (Netaji
G-SimCLR: Self-Supervised Contrastive Learning with Guided Projection via Pseudo Labelling 912 Souradip Chakraborty (Walmart Labs), Aritra Roy Gosthipaty (Netaji Subhash Engineering College), and Sayak Paul (PylmageSearch) Multi-task Time Series Forecasting with Shared Attention

Author Index