2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS 2020)

Durham, North Carolina, USA 16 – 19 November 2020

Pages 1-727

IEEE Catalog Number: ISBN: CFP20053-POD 978-1-7281-9622-0

Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

-7281-9622-0 -7281-9621-3

CFP20053-POD
978-1-7281-9622
978-1-7281-9621
1523-8288

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA (845) 758-0400 Phone: Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS) **FOCS 2020**

Table of Contents

FOCS 2020 Preface xviii
FOCS 2020 Organizing Committee and Sponsors xix
FOCS 2020 Program Committee .xx.
Subreviewers xxi
FOCS 2020 Awards .xxvi

Session 1A

Almost-Everywhere Circuit Lower Bounds from Non-Trivial Derandomization .1 Lijie Chen (MIT), Xin Lyu (Tsinghua University), and R. Ryan Williams (MIT)
On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds [Extended Abstract] .13 Lijie Chen (MIT, USA), Ron D. Rothblum (Technion, Israel), Roei Tell (MIT, USA), and Eylon Yogev (Boston University, USA and Tel Aviv University, Israel)
Lifting with Simple Gadgets and Applications to Circuit and Proof Complexity .24 Susanna de Rezende (Institute of Mathematics of the Czech Academy of Sciences, Czech Republic), Or Meir (University of Haifa, Israel), Jakob Nordstrom (University of Copenhagen and Lund University, Denmark and Sweden), Toniann Pitassi (University of Toronto and IAS, Canada, USA), Robert Robere (McGill University, Canada), and Marc Vinyals (Technion, Israel)
Tree-Depth and the Formula Complexity of Subgraph Isomorphism .31 Deepanshu Kush (University of Toronto, Canada) and Benjamin Rossman (Duke University, USA)
 KRW Composition Theorems via Lifting .43. Susanna F. de Rezende (Institute of Mathematics of the Czech Academy of Sciences, Czech Republic), Or Meir (University of Haifa, Israel), Jakob Nordström (University of Copenhagen, Denmark, and Lund University, Sweden), Toniann Pitassi (University of Toronto, Canada, and Institute of Advanced Study, USA), and Robert Robere (McGill University, Canada)
Characterizing Average-Case Complexity of PH by Worst-Case Meta-Complexity .50 Shuichi Hirahara (National Institute of Informatics, Japan)

Session 1B

Near-Linear Size Hypergraph Cut Sparsifiers .61 Yu Chen (University of Pennsylvania, USA), Sanjeev Khanna (University of Pennsylvania, USA), and Ansh Nagda (University of Washington, USA)	
Towards Better Approximation of Graph Crossing Number .73 Julia Chuzhoy (Toyota Technological Institute at Chicago), Sepideh Mahabadi (Toyota Technological Institute at Chicago), and Zihan Tan (University of Chicago)	
Deterministic Min-cut in Poly-Logarithmic Max-Flows .85 Jason Li (CMU) and Debmalya Panigrahi (Duke University)	
Circulation Control for Faster Minimum Cost Flow in Unit-Capacity Graphs .93 Kyriakos Axiotis (MIT), Aleksander Mądry (MIT), and Adrian Vladu (Boston University)	
Cut-Equivalent Trees are Optimal for Min-Cut Queries .105 Amir Abboud (IBM Almaden, USA), Robert Krauthgamer (Weizmann Institute of Science, Israel), and Ohad Trabelsi (Weizmann Institute of Science, Israel)	
Unit Capacity Maxflow in Almost m ^(4/3) Time .119 Tarun Kathuria (UC Berkeley), Yang P. Liu (Stanford University), and Aaron Sidford (Stanford University)	

Session 1C

Low-Degree Hardness of Random Optimization Problems .131 David Gamarnik (Massachusetts Institute of Technology, USA), Aukosh Jagannath (University of Waterloo, Canada), and Alexander S. Wein (New York University, USA)
List Decodable Mean Estimation in Nearly Linear Time .141 Yeshwanth Cherapanamjeri (University of California at Berkeley), Sidhanth Mohanty (University of California at Berkeley), and Morris Yau (University of California at Berkeley)
 Outlier-Robust Clustering of Gaussians and Other Non-Spherical Mixtures .149 Ainesh Bakshi (CMU, USA), Ilias Diakonikolas (UW Madison, USA), Samuel B. Hopkins (UC Berkeley, USA), Daniel Kane (UC San Diego, USA), Sushrut Karmalkar (UT Austin, USA), and Pravesh K. Kothari (CMU, USA)
Collaborative Top Distribution Identifications with Limited Interaction (Extended Abstract) .160 Nikolai Karpov (Indiana University Bloomington), Qin Zhang (Indiana University Bloomington), and Yuan Zhou (University of Illinois at Urbana-Champaign)
Kernel Density Estimation through Density Constrained Near Neighbor Search .172 Moses Charikar (Stanford University, USA), Michael Kapralov (EPFL, Switzerland), Navid Nouri (EPFL, Switzerland), and Paris Siminelakis (UC Berkeley, USA)

Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models .184..... Ilias Diakonikolas (UW Madison) and Daniel M. Kane (UC San Diego)

Session 2A

QMA-Hardness of Consistency of Local Density Matrices with Applications to Quantum Zero-Knowledge .196 Anne Broadbent (University of Ottawa) and Alex Bredariol Grilo (LIP6, CNRS/Sorbonne Université)
Tight Limits on Nonlocality from Nontrivial Communication Complexity; a.k.a. Reliable Computation with Asymmetric Gate Noise .206 Noah Shutty (Stanford University, USA), Mary Wootters (Stanford University, USA), and Patrick Hayden (Stanford University, USA)
Decodable Quantum LDPC Codes Beyond the Square Root Distance Barrier using High Dimensional Expanders .218 Shai Evra (Institute for Advanced Studies, Princeton), Tali Kaufman (Dept. of Computer Science, Bar-Ilan University, Israel), and Gilles Zémor (Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux, France)
Towards Optimal Separations between Quantum and Randomized Query Complexities .228 Avishay Tal (University of California, Berkeley)
A Tight Composition Theorem for the Randomized Query Complexity of Partial Functions .240 Shalev Ben-David (University of Waterloo) and Eric Blais (University of Waterloo)
Towards a Proof of the Fourier–Entropy Conjecture? .247 Esty Kelman (Tel-Aviv University), Guy Kindler (Hebrew University of Jerusalem), Noam Lifshitz (Hebrew University of Jerusalem), Dor Minzer (Massachusetts Institute of Technology), and Muli Safra (Tel-Aviv University)

Session 2B

Mechanisms for a No-Regret Agent: Beyond the Common Prior .259 Modibo K. Camara (Northwestern University), Jason D. Hartline (Northwestern University), and Aleck Johnsen (Northwestern University)
Smoothed Complexity of 2-Player Nash Equilibria .27.1 Shant Boodaghians (University of Illinois at Urbana-Champaign), Joshua Brakensiek (Stanford University), Samuel B. Hopkins (University of California, Berkeley), and Aviad Rubinstein (Stanford University)
Coordinate Methods for Matrix Games .283. Yair Carmon (Tel Aviv University, Stanford University), Yujia Jin (Stanford University), Aaron Sidford (Stanford University), and Kevin Tian (Stanford University)
Benchmark Design and Prior-Independent Optimization 294 Jason Hartline (Northwestern University), Aleck Johnsen (Northwestern University), and Yingkai Li (Northwestern University)

An O(log log m) Prophet Inequality for Subadditive Combinatorial Auctions .306..... Paul Dütting (London School of Economics, UK), Thomas Kesselheim (University of Bonn, Germany), and Brendan Lucier (Microsoft Research, USA)

Session 2C

The Coin Problem with Applications to Data Streams .318 Mark Braverman (Princeton University, USA), Sumegha Garg (Harvard University, USA), and David P. Woodruff (CMU, USA)
Optimal Streaming Approximations for all Boolean Max-2CSPs and Max-kSAT .330 Chi-Ning Chou (Harvard University), Alexander Golovnev (Harvard University), and Santhoshini Velusamy (Harvard University)
Near-Quadratic Lower Bounds for Two-Pass Graph Streaming Algorithms .342 Sepehr Assadi (Rutgers University, USA) and Ran Raz (Princeton University, USA)
Multi-pass Graph Streaming Lower Bounds for Cycle Counting, MAX-CUT, Matching Size, and Other Problems .354 Sepehr Assadi (Rutgers University), Gillat Kol (Princeton University), Raghuvansh R. Saxena (Princeton University), and Huacheng Yu (Princeton University)
Distributed Lower Bounds for Ruling Sets .365 Alkida Balliu (University of Freiburg), Sebastian Brandt (ETH Zurich), and Dennis Olivetti (University of Freiburg)
Deterministic Distributed Expander Decomposition and Routing with Applications in Distributed Derandomization .377 Yi-Jun Chang (ETH Institute for Theoretical Studies) and Thatchaphol Saranurak (Toyota Technological Institute of Chicago)

Session 3: Plenary Session

An Equivalence Between Private Classification and Online Prediction .389 Mark Bun (Department of Computer Science University of Bostong), Roi Livni (Department of Electrical Engineering, Tel Aviv University), and Shay Moran (Department of Mathematics, Technion)
A New Minimax Theorem for Randomized Algorithms (Extended Abstract) .403 Shalev Ben-David (University of Waterloo) and Eric Blais (University of Waterloo)
Edge-Weighted Online Bipartite Matching .412 Matthew Fahrbach (Google Research), Zhiyi Huang (The University of Hong Kong), Runzhou Tao (Columbia University), and Morteza Zadimoghaddam (Google Research)
Constant Depth Formula and Partial Function Versions of MCSP are Hard .424 Rahul Ilango (Massachusetts Institute of Technology)

Session 4A

Unique Decoding of Explicit ε-Balanced Codes Near the GilbertVarshamov Bound .434 Fernando Granha Jeronimo (University of Chicago), Dylan Quintana (University of Chicago), Shashank Srivastava (TTIC), and Madhur Tulsiani (TTIC)
Deterministic and Efficient Interactive Coding from Hard-to-Decode Tree Codes .446 Zvika Brakerski (Weizmann Institute of Science), Yael Tauman Kalai (Microsoft and MIT), and Raghuvansh R. Saxena (Princeton University)
LDPC Codes Achieve List Decoding Capacity .458. Jonathan Mosheiff (Canegie Mellon University, USA), Nicolas Resch (Canegie Mellon University, USA), Noga Ron-Zewi (University of Haifa, Israel), Shashwat Silas (Stanford University, USA), and Mary Wootters (Stanford University, USA)
Binary Interactive Error Resilience Beyond 1/8 (or why (1/2)^3 > 1/8) .470 Klim Efremenko (Ben Gurion University), Gillat Kol (Princeton University), and Raghuvansh R. Saxena (Princeton University)
Coded Trace Reconstruction in a Constant Number of Traces .482 Joshua Brakensiek (Stanford University, USA), Ray Li (Stanford University, USA), and Bruce Spang (Stanford University, USA)
Network Coding Gaps for Completion Times of Multiple Unicasts .494 Bernhard Haeupler (Carnegie Mellon University), David Wajc (Stanford), and Goran Zuzic (ETH Zurich)
Session 4B

Robust and Sample Optimal Algorithms for PSD Low Rank Approximation .506 Ainesh Bakshi (CMU, USA), Nadiia Chepurko (MIT, USA), and David P. Woodruff (CMU, USA)
Near Optimal Linear Algebra in the Online and Sliding Window Models .517 Vladimir Braverman (Johns Hopkins University), Petros Drineas (Purdue University), Cameron Musco (University of Massachusetts Amherst), Christopher Musco (New York University), Jalaj Upadhyay (Apple, Inc.), David P. Woodruff (Carnegie Mellon University), and Samson Zhou (Carnegie Mellon University)
Pseudospectral Shattering, the Sign Function, and Diagonalization in Nearly Matrix Multiplication Time .529 Jess Banks (UC Berkeley), Jorge Garza-Vargas (UC Berkeley), Archit Kulkarni (UC Berkeley), and Nikhil Srivastava (UC Berkeley)
Algorithms and Hardness for Linear Algebra on Geometric Graphs .541 Josh Alman (Harvard University), Timothy Chu (Carnegie Mellon University), Aaron Schild (University of Washington), and Zhao Song (Columbia University, Princeton University, and Institute for Advanced Study)
Sparse PCA: Algorithms, Adversarial Perturbations and Certificates .553 Tommaso d'Orsi (ETH Zurich), Pravesh K. Kothari (Carnegie-Mellon University), Gleb Novikov (ETH Zurich), and David Steurer (ETH Zurich)

Maximizing Determinants Under Matroid Constraints .565..... Vivek Madan (Amazon), Aleksandar Nikolov (University of Toronto), Mohit Singh (Georgia Institute of Technology), and Uthaipon (Tao) Tantipongpipat (Twitter)

Session 4C

Adjacency Labelling for Planar Graphs (and Beyond) .577 Vida Dujmović (University of Ottawa, Canada), Louis Esperet (CNRS, Univ. Grenoble Alpes, France), Cyril Gavoille (Université de Bordeaux, France), Gwenaël Joret (Université Libre de Bruxelles, Belgium), Piotr Micek (Jagiellonian University, Poland), and Pat Morin (Carleton University, Canada)
On Light Spanners, Low-Treewidth Embeddings and Efficient Traversing in Minor-free Graphs .589 Vincent Cohen-Addad (Google Research), Arnold Filtser (Columbia University), Philip N. Klein (Brown University), and Hung Le (University of Massachusetts at Amherst)
Twin-Width I: Tractable FO Model Checking .601 Édouard Bonnet (ENS Lyon, LIP), Eun Jung Kim (Paris-Dauphine University, LAMSADE), Stéphan Thomassé (ENS Lyon, LIP), and Rémi Watrigant (ENS Lyon, LIP)
Independent Set on P_k-Free Graphs in Quasi-Polynomial Time .613 Peter Gartland (University of California at Santa Barbara) and Daniel Lokshtanov (University of California at Santa Barbara)
Isomorphism Testing for Graphs Excluding Small Minors .625 Martin Grohe (RWTH Aachen University), Daniel Neuen (CISPA Helmholtz Center for Information Security), and Daniel Wiebking (RWTH Aachen University)

Session 5A

Quantum Speedup for Graph Sparsification, Cut Approximation and Laplacian Solving .637 Simon Apers (CWI, the Netherlands; Inria, France; ULB, Belgium) and Ronald de Wolf (QuSoft, CWI and University of Amsterdam, the Netherlands)
Symmetries, Graph Properties, and Quantum Speedups .649 Shalev Ben-David (University of Waterloo, Canada), Andrew M. Childs (University of Maryland, USA), András Gilyén (California Institute of Technology, USA), William Kretschmer (University of Texas at Austin, USA), Supartha Podder (University of Ottawa, Canada), and Daochen Wang (University of Maryland, USA)
Quantum Isomorphism is Equivalent to Equality of Homomorphism Counts from Planar Graphs .66 Laura Mančinska (University of Copenhagen, Denmark) and David E. Roberson (Technical University of Denmark, Denmark)
Tight Quantum Time-Space Tradeoffs for Function Inversion .67.3 Kai-Min Chung (Academia Sinica, Taiwan), Siyao Guo (New York University Shanghai, China), Qipeng Liu (Princeton University & NTT Research, USA), and Luowen Qian (Boston University, USA)

Sample-Efficient Learning of Quantum Many-Body Systems .685 Anurag Anshu (University of Waterloo and Perimeter Institute, Canada), Srinivasan Arunachalam (IBM Research, USA), Tomotaka Kuwahara (RIKEN Center, Japan), and Mehdi Soleimanifar (MIT, USA)
Entanglement is Necessary for Optimal Quantum Property Testing .692 Sebastien Bubeck (Microsoft Research, USA), Sitan Chen (MIT, USA), and Jerry Li (Microsoft Research, USA)
Session 5B
Lazy Search Trees .704 Bryce Sandlund (University of Waterloo) and Sebastian Wild (University of Liverpool)
2D Generalization of Fractional Cascading on Axis-Aligned Planar Subdivisions .716 Peyman Afshani (Aarhus University) and Pingan Cheng (Aarhus University)
Subsets and Supermajorities: Optimal Hashing-Based Set Similarity Search .728 Thomas D. Ahle (BARC, IT University of Copenhagen, Denmark) and Jakob B. T. Knudsen (BARC, University of Copenhagen, Denmark)
Polynomial Data Structure Lower Bounds in the Group Model .740 Alexander Golovnev (Harvard University), Gleb Posobin (Columbia University), Oded Regev (Courant Institute of Mathematical Sciences, New York University), and Omri Weinstein (Columbia University)
An Adaptive Step Toward the Multiphase Conjecture .752 Young Kun Ko (New York University) and Omri Weinstein (Columbia University)
Analysis of Two-Variable Recurrence Relations with Application to Parameterized Approximations .762 Ariel Kulik (Technion) and Hadas Shachnai (Technion)
Session 5C
New Techniques for Proving Fine-Grained Average-Case Hardness .77.4 Mina Dalirrooyfard (MIT), Andrea Lincoln (MIT), and Virginia Vassilevska Williams (MIT)
Monochromatic Triangles, Triangle Listing and APSP .786 Virginia Vassilevska Williams (Massachusetts Institute of Technology, USA) and Yinzhan Xu (Massachusetts Institute of Technology, USA)
A Parameterized Approximation Scheme for Min k-Cut .798 Daniel Lokshtanov (University of California, Santa Barbara, USA), Saket Saurabh (The Institute of Mathematical Sciences, HBNI, Chennai, India, and University of Bergen, Norway), and Vaishali Surianarayanan (University of California, Santa Barbara, USA)
Hypergraph k-cut for Fixed k in Deterministic Polynomial Time .810.

Karthekeyan Chandrasekaran (University of Illinois, Urbana-Champaign) and Chandra Chekuri (University of Illinois, Urbana-Champaign)

Scheduling with Communication Delays via LP Hierarchies and Clusterin	g .822
Sami Davies (University of Washington), Janardhan Kulkarni (Microsoft	-
Research), Thomas Rothvoss (University of Washington), Jakub Tarnawski	
(Microsoft Research), and Yihao Zhang (University of Washington)	

Scheduling Precedence-Constrained Jobs on Related Machines with Communication Delay .834.... Biswaroop Maiti (Northeastern University, USA), Rajmohan Rajaraman (Northeastern University, USA), David Stalfa (Northeastern University, USA), Zoya Svitkina (Google Research, USA), and Aravindan Vijayaraghavan (Northwestern University, USA)

Session 6A

Local Proofs Approaching the Witness Length [Extended Abstract] .846 Noga Ron-Zewi (University of Haifa, Israel) and Ron D. Rothblum (Technion, Israel)
Rigid Matrices from Rectangular PCPs or: Hard Claims Have Complex Proofs .858 Amey Bhangale (University of California, Riverside, USA), Prahladh Harsha (Tata Institute of Fundamental Research, Mumbai, India), Orr Paradise (University of California, Berkeley, USA), and Avishay Tal (University of California, Berkeley, USA)
On the Existence of Algebraically Natural Proofs .870. Prerona Chatterjee (STCS, TIFR, Mumbai, India), Mrinal Kumar (Dept. of CS&E, IIT Bombay, Mumbai, India), C. Ramya (STCS, TIFR, Mumbai, India), Ramprasad Saptharishi (STCS, TIFR, Mumbai, India), and Anamay Tengse (STCS, TIFR, Mumbai, India)
Symbolic Determinant Identity Testing (SDIT) is not a null cone Problem; and the Symmetries of Algebraic Varieties .881 Visu Makam (Institute for Advanced Study) and Avi Wigderson (Institute for Advanced Study)
Learning sums of Powers of Low-Degree Polynomials in the Non-Degenerate Case .889 Ankit Garg (Microsoft Research India), Neeraj Kayal (Microsoft Research India), and Chandan Saha (Indian Institute of Science, Bengaluru)
Proximity Gaps for Reed–Solomon Codes .900. Eli Ben-Sasson (StarkWare, Israel), Dan Carmon (StarkWare, Israel), Yuval Ishai (Technion, Israel), Swastik Kopparty (Rutgers University, New Jersey), and Shubhangi Saraf (Rutgers University, New Jersey)

Session 6B

A Faster Interior Point Method for Semidefinite Programming .910..... Haotian Jiang (University of Washington), Tarun Kathuria (University of California, Berkeley), Yin Tat Lee (University of Washington, Microsoft Research Redmond), Swati Padmanabhan (University of Washington), and Zhao Song (Columbia University, Princeton University, and Institute for Advanced Study)

 Bipartite Matching in Nearly-Linear Time on Moderately Dense Graphs	.9
 Revisiting Tardos's Framework for Linear Programming: Faster Exact Solutions using Approximate Solvers	31
Subexponential LPs Approximate Max-Cut	13
 Sum-of-Squares Lower Bounds for Sherrington-Kirkpatrick via Planted Affine Planes	54
Approximation Algorithms for Stochastic Minimum-Norm Combinatorial Optimization	56

Session 6C

Faster Approximate Pattern Matching: A Unified Approach Panagiotis Charalampopoulos (King's College London, UK and University of Warsaw, Poland), Tomasz Kociumaka (Bar-Ilan University, Israel), and Philip Wellnitz (Max Planck Institute for Informatics, Germany)	978
Edit Distance in Near-Linear Time: It's a Constant Factor Alexandr Andoni (Columbia University) and Negev Shekel Nosatzki (Columbia University)	9 90
Resolution of the Burrows-Wheeler Transform Conjecture	302
Framework for ER-Completeness of Two-Dimensional Packing Problems	014
Smoothing the gap Between NP and ER)22

Session 7A

Explicit near-Fully X-Ramanujan Graphs	5
Nearly Optimal Pseudorandomness From Hardness	7
Correlated Pseudorandom Functions from Variable-Density LPN	9
An Improved Exponential-Time Approximation Algorithm for Fully-Alternating Games Against Nature	1
A Dichotomy for Real Boolean Holant Problems	1
Dichotomy for Graph Homomorphisms with Complex Values on Bounded Degree Graphs 1103 Jin-Yi Cai (Department of Computer Sciences, University of Wisconsin-Madison) and Artsiom Hovarau (Department of Computer Sciences, University of Wisconsin-Madison)	3

Session 7B

Near-Optimal Decremental SSSP in Dense Weighted Digraphs
Deterministic Decremental Reachability, SCC, and Shortest Paths via Directed Expanders and
Congestion Balancing
Aaron Bernstein (Rutgers University New Brunswick), Maximilian Probst
Gutenberg (University of Copenhagen and BARC), and Thatchaphol
Saranurak (Toyota Technological Institute at Chicago)
Fast Dynamic Cuts, Distances and Effective Resistances via Vertex Sparsifiers
Li Chen (Georgia Institute of Technology, USA), Gramoz Goranci
(University of Toronto, Canada), Monika Henzinger (University of
Vienna, Austria), Richard Peng (Georgia Institute of Technology, USA),
and Thatchaphol Saranurak (Toyota Technological Institute at Chicago,
USA)

Fully-Dynamic Submodular Cover with Bounded Recourse Anupam Gupta (Carnegie Mellon University) and Roie Levin (Carnegie Mellon University)	1147
A Deterministic Algorithm for Balanced Cut with Applications to Dynamic Connectivity,	
Flows, and Beyond	1158
Julia Chuzhoy (Toyota Technological Institute of Chicago), Yu Gao	
(Georgia Institute of Technology), Jason Li (Carnegie Mellon	
University), Danupon Nanongkai (KTH Royal Institute of Technology),	
Richard Peng (Georgia Institute of Technology), and Thatchaphol	
Saranurak (Toyota Technological Institute of Chicago)	

Session 7C

Sublinear-Time Algorithms for Computing & Embedding Gap Edit Distance	68
Testing Linear-Invariant Properties 118 Jonathan Tidor (MIT) and Yufei Zhao (MIT)	80
Testing Positive Semi-Definiteness via Random Submatrices 119 Ainesh Bakshi (Carnegie Mellon University), Rajesh Jayaram (Carnegie 119 Mellon University), and Nadiia Chepurko (Massachusetts Institute of 7 Technology) 119	Э1
Combinatorial Group Testing and Sparse Recovery Schemes with Near-Optimal Decoding Time . 120 Mahdi Cheraghchi (University of Michigan, Ann Arbor) and Vasileios Nakos (Saarland University and Max-Planck Institute for Informatics)	03
 Pandora's Box with Correlations: Learning and Approximation	14

Session 8A

 Extractors and Secret Sharing Against Bounded Collusion Protocols	226
On One-way Functions and Kolmogorov Complexity	243
Is it Easier to Prove Theorems that are Guaranteed to be True?	255
A Tight Lower Bound on Adaptively Secure Full-Information Coin Flip	<u>2</u> 68

The Round Complexity of Perfect MPC with Active Security and Optimal Resiliency (Extended Abstract) 1277 Benny Applebaum (Tel-Aviv University, Israel), Eliran Kachlon (Tel-Aviv University, Israel), and Arpita Patra (Indian Institute of Science, India) 1205
A Constant Rate Non-Malleable Code in the Split-State Model
Session 8B
High-Precision Estimation of Random Walks in Small Space
Rapid Mixing of Glauber Dynamics up to Uniqueness via Contraction
Spectral Independence in High-Dimensional Expanders and Applications to the Hardcore Model 1319 Nima Anari (Stanford University), Kuikui Liu (University of Washington), and Shayan Oveis Gharan (University of Washington)
Isotropy and Log-Concave Polynomials: Accelerated Sampling and High-Precision Counting of Matroid Bases
Nima Anari (Stanford University) and Michał Dereziński (University of California, Berkeley)
The Complexity of Approximating Averages on Bounded-Degree Graphs
Counting Small Induced Subgraphs Satisfying Monotone Properties

Session 8C

Beyond Tree Embeddings - A Deterministic Framework for Network Design with Deadlines or Delay	1368
Ýossi Azar (Tel Aviv University) and Noam Touitou (Tel Aviv University)	
Fully Online Matching II: Beating Ranking and Water-Filling	. 1380
Zhiyi Huang (The University of Hong Kong), Zhihao Gavin Tang (Shanghai	
University of Finance and Economics), Xiaowei Wu (University of	
Macau), and Yuhao Zhang (The University of Hong Kong)	

Stochastic Weighted Matching: (1-ε) Approximation	392
Optimal Anytime Regret for two Experts	404
AdWords in a Panorama	416
Resolving the Optimal Metric Distortion Conjecture	427

Additional Paper

Communication Complexity of Nash Equilibrium in Potential Games (Extended Abstract)...... 1439 Yakov Babichenko (Israel Institute of Technology, Israel), Aviad Rubinstein (Stanford University, USA)

Author Index