2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR 2020)

Virtual Conference 9 – 13 November 2020

IEEE Catalog Number: CFP20MAR-POD **ISBN:**

978-1-7281-8509-5

Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP20MAR-POD 978-1-7281-8509-5 978-1-7281-8508-8 1554-7868

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) ISMAR 2020

Table of Contents

Message from the ISMAR 2020 General Chairs	cvii
Message from the ISMAR 2020 Science and Technology Program Chairs and TVCG Guest	
Editors	xviii
Message from the ISMAR 2020 Science and Technology Program Chairs	XX
Message from the ISMAR 2020 Science and Technology Poster Chairs	xxii
Message from the Workshop and Tutorial Chairs	xxiv
Message from the ISMAR 2020 Demos Chairs	XXV
ISMAR 2020 Conference Committee Members	xxvi
ISMAR 2020 Science and Technology Program Committee Members	xxviii
ISMAR 2020 Steering Committee Members	XXX
	xxxii
	xxxvi
Sponsors and Supporters	xxxix

S1 - Modeling & Rendering

Foveated Instant Radiosity Lili Wang (Beihang University, China), Runze Li (Beihang University, China), Xuehuai Shi (Beihang University, China), Ling-Qi Yan (University of California, Santa Barbara), and Zhichao Li (Beihang University, China)	. 1
Flower Factory: A Component-Based Approach for Rapid Flower Modeling Siyuan Wang (Beihang University, China), Junjun Pan (Beihang University, China), Junxuan Bai (Beihang University, China), and Jinglei Wang (ByteDance, China)	12

S2 - Authoring & Reconstruction

Scale-Aware Insertion of Virtual Objects in Monocular Videos	. 36
Songhai Zhang (Tsinghua University, China), Xiangli Li (Tsinghua	
University, China), Yingtian Liu (Tsinghua University, China), and	
Hongbo Fu (City University of Hong Kong, Hong Kong)	

S3 - Perception

Perception of Multisensory Wind Representation in Virtual Reality Gabriel Giraldo (AAU - Ambiances Architectures Urbanités, Ecole Centrale de Nantes, France), Myriam Servières (AAU, Centrale Nantes, France), and Guillaume Moreau (Ecole Centrale de Nantes, France)	45
The Effects of Body Tracking Fidelity on Embodiment of an Inverse-Kinematic Avatar for Male Participants James Coleman Eubanks (University of Texas at Dallas, USA), Alec G Moore (University of Central Florida, USA), Paul Fishwick (UT Dallas, USA), and Ryan P. Mcmahan (University of Central Florida, USA)	54
The Effects of Object Shape, Fidelity, Color, and Luminance on Depth Perception in Handheld Mobile Augmented Reality <i>Tiffany D. Do (University of Central Florida, USA), Joseph Laviola</i> <i>(University of Central Florida, USA), and Ryan P. Mcmahan (University</i> <i>of Central Florida, USA)</i>	64
Optical Distortions in VR Bias the Perceived Slant of Moving Surfaces Jonathan Tong (York University, Canada), Robert Allison (York University, Canada), and Laurie M Wilcox (York University, Canada)	73

S4 - Near Eye Displays

Can Retinal Projection Displays Improve Spatial Perception in Augmented Reality? Etienne Peillard (Ecole Centrale de Nantes; France; Inria, France), Yuta Itoh (Tokyo Institute of Technology, Japan; RIKEN, Japan), Jean-Marie Normand (Ecole Centrale de Nantes, France), Ferran Argelaguet Sanz (Inria, France), Guillaume Moreau (Ecole Centrale de Nantes, France), and Anatole Lécuyer (Inria, France)	80
Stimulating the Human Visual System Beyond Real World Performance in Future Augmented Reality Displays David Dunn (UNC-Chapel Hill, Chapel Hill, North Carolina, USA), Okan Tarhan Tursun (Università della Svizzera italiana (USI), Lugano, Switzerland), Hyeonseung Yu (MPI Informatik, Saarbrucken, Germany), Piotr Didyk (University of Lugano, Lugano, Switzerland), Karol Myszkowski (Computer Graphics, MPI Informaktik, Saarbruecken, Germany), and Henry Fuchs (Computer Science, UNC Chapel Hill, Chapel Hill, North Carolina, USA)	90

Digital Full-Face Mask Display with Expression Recognition Using Embedded Photo Reflective

Sensor Arrays	
Yoshinari Takegawa (Future University, Japan), Yutaka Tokuda	
(Freelance, Japan), Akino Umezawa (Future University Hakodate, Japan),	
Katsuhiro Suzuki (Keio University, Japan), Katsutoshi Masai (Keio	
University, Japan), Yuta Sugiura (Keio University, Japan), Maki	
Sugimoto (Sugimoto Lab, Keio University, Japan), Diego	
Martinez-Plasencia (University of Sussex, United Kingdom), Sriram	
Subramanian (University of Sussex, United Kingdom), and Keiji Hirata	
(Future University Hakodate, Japan)	
Color Mairá Daduction and Pacalutian Improvement for Integral 2D Displays Llein	

Hisayuki Sasaki (Science & Technology Research Laboratories, NHK
(Japan Broadcasting Corporation), Japan), Naoto Okaichi (Science &
Technology Research Laboratories, NHK (Japan Broadcasting
Corporation), Japan), Hayato Watanabe (Science & Technology Research
Laboratories, NHK (Japan Broadcasting Corporation), Japan), Takuya
Omura (Science & Technology Research Laboratories, NHK (Japan
Broadcasting Corporation), Japan), Masanori Kano (Science & Technology
Research Laboratories, NHK (Japan Broadcasting Corporation), Japan),
and Masahiro Kawakita (Science & Technology Research Laboratories, NHK
(Japan Broadcasting Corporation), Japan)

S5 - Tracking & Detection

Optical Gaze Tracking with Spatially-Sparse Single-Pixel Detectors
RGB-D-E: Event Camera Calibration for Fast 6-DoF Object Tracking
 An Efficient Planar Bundle Adjustment Algorithm
Learning Bipartite Graph Matching for Robust Visual Localization

Object Detection in the Context of Mobile Augmented Reality 1	156
Xiang Li (OPPO US Research Center, Palo Alto, California, USA), Yuan	
Tian (OPPO US Research Center, Palo Alto, California, USA), Fuyao	
Zhang (OPPO US Research Center, Palo Alto, California, USA), Shuxue	
Quan (OPPO US Research Center, Palo Alto, California, USA), and Yi Xu	
(OPPO US Research Center, Palo Alto, California, USA)	

S6 - Projection Mapping & 360 Experiences

ElaMorph Projection: Deformation of 3D Shape by Dynamic Projection Mapping
Real-Time Adaptive Color Correction in Dynamic Projection Mapping
 Transitioning360: Content-Aware NFoV Virtual Camera Paths for 360° Video Playback

S7 - Manipulation & Selection

TanGi: Tangible Proxies for Embodied Object Exploration and Manipulation in Virtual Reality	195
Martin Feick (University College London, United Kingdom; Saarland University of Applied Sciences, Germany), Scott Bateman (University of New Brunswick, Canada), Anthony Tang (University of Toronto, Canada), André Miede (Saarland University of Applied Science, Germany), and Nicolai Marquardt (University College London, United Kingdom)	
Gain a New Perspective: Towards Exploring Multi-view Alignment in Mixed Reality Alejandro Martin-Gomez (Technical University of Munich, Germany), Javad Fotouhi (Johns Hopkins University, USA), Ulrich Eck (Technische Universitaet Muenchen, Germany), and Nassir Navab (Technische Universität München, Germany)	207

Augmented Mirrors	217
Alejandro Martin-Gomez (Technical University of Munich, Germany),	
Alexander Winkler (Technical University of Munich, Germany), Kevin Yu	
(University Hospital Rechts der Isar of the Technical University of	
Munich, Germany), Daniel Roth (Technical University Munich, Germany),	
Ulrich Eck (Technische Universitaet Muenchen, Germany), and Nassir	
Navab (Fakultät für Informatik, Technische Universität München,	
Germany)	

S8 - Hands

A Comparative Study of Orientation Support Tools in Virtual Reality Environments with Virtual Teleportation	227
 Haptic Handshank – A Handheld Multimodal Haptic Feedback Controller for Virtual Reality 2 K M Arafat Aziz (State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China), Hu Luo (Beihang University, China), Asma Lehiany (Beihang University, China), Weiliang Xu (The University of Auckland, New Zealand), Yuru Zhang (State Key Lab of Virtual Reality Technology and Systems, Beihang University, China), and Dangxiao Wang (State Key Lab of Virtual Reality Technology and Systems, Beihang University, China) 	239
Bare-Hand Depth Inpainting for 3D Tracking of Hand Interacting with Object	251
Influence of Hand Visualization on Tool-Based Motor Skills Training in an Immersive VR Simulator	260
Determining Detection Thresholds for Fixed Positional Offsets for Virtual Hand Remapping in Virtual Reality	269

S9 - Multi-Modal Interaction

 Enhancing Visitor Experience or Hindering Docent Roles: Attentional Issues in Augmented Reality Supported Installations	9
S10 - Near Eye Displays 2	
AR Interfaces for Mid-Air 6-DOF Alignment: Ergonomics-Aware Design and Evaluation	9
Super Wide-View Optical See-Through Head-Mounted Displays with Per-Pixel Occlusion Capability	1
Yan Zhang (Nara Institute of Science and Technology, Japan), Naoya Isoyama (Nara Institute of Science and Technology, Japan), Nobuchika Sakata (NAIST, Japan), Kiyoshi Kiyokawa (Nara Institute of Science and Technology, Japan), and Hong Hua (University of Arizona, USA)	
Towards Eyeglass-Style Holographic Near-Eye Displays with Statically Expanded Eyebox 31 Xinxing Xia (Shanghai University, China), Yunqing Guan (Singapore Institute of Technology, Singapore), Andrei State (University of North Carolina at Chapel Hill, USA), Praneeth Chakravarthula (UNC Chapel Hill, USA), Tat-Jen Cham (Nanyang Technological University, Singapore), and Henry Fuchs (UNC Chapel Hill, USA)	2
mproved Vergence and Accommodation via Purkinje Image Tracking with Multiple Cameras for AR Glasses	0

S11 - Input

ARpads: Mid-Air Indirect Input for Augmented Reality	
Eugenie Brasier (LRI, Université Paris-Saclay, CNRS, Ínria, Orsay,	
Frănce), Olivier Chapuis (LRI, Université Paris-Saclay, CNRS, Inria,	
Orsay, France), Nicolas Ferey (CNRS-LIMSI, Université Paris Sud,	
Orsay, France), Jeanne Vezien (LIMSI, CNRS-University of Paris-Saclay,	
Orsay, France), and Caroline Appert (LRI, Université Paris-Saclay,	
CNRŠ, Inria, Orsay, France)	

 Exploration of Hands-Free Text Entry Techniques for Virtual Reality
Investigating Remote Tactile Feedback for Mid-Air Text-Entry in Virtual Reality
Pen-Based Interaction with Spreadsheets in Mobile Virtual Reality
 Face Commands – User-Defined Facial Gestures for Smart Glasses

S12 - Evaluating User Experience

Virtual Reality Sickness Detection: An Approach Based on Physiological Signals and Machine Learning Nicolas Martin (b<>com, Cesson-Sevigne, France), Nicolas Mathieu (Ubisoft, Montreuil, France), Nico Pallamin (b<>com, Cesson-Sevigne, France), Martin Ragot (b<>com, Cesson-Sevigne, France), and Jean-Marc Diverrez (b<>com, Cesson-Sevigne, France)	. 387
Automatic Detection and Prediction of Cybersickness Severity Using Deep Neural Networks from User's Physiological Signals <i>Rifatul Islam (University of Texas at San Antonio, USA), Yonggun Lee</i> <i>(University of Texas at San Antonio, USA), Mehrad Jaloli (University of Texas at San Antonio, USA), Imtiaz Muhammad Arafat (University of Texas at San Antonio, USA), Dakai Zhu (University of Texas at San Antonio, USA), Peyman Paul Najafirad (ISCS, UTSA, San Antonio, USA), Yufei Huang (University of Texas at San Antonio, USA), and John Quarles (University of Texas at San Antonio, USA)</i>	. 400

Seamless, Bi-Directional Transitions along the Reality-Virtuality Continuum: A Conceptualization and Prototype Exploration <i>Ceenu George (LMU Munich, Germany), An Ngo Tien (LMU Munich, Germany),</i> <i>and Heinrich Hussmann (LMU Munich, Germany)</i>	412
Towards Real-Time Recognition of Users' Mental Workload Using Integrated Physiological Sensors into a VR HMD <i>Tiffany Luong (b<>com, Cesson-Sevigne, France; Inria, Rennes, France),</i> <i>Nicolas Martin (b<>com, Cesson-Sevigne, France), Anaïs Raison (b<>com,</i> <i>Cesson-Sevigne, France), Ferran Argelaguet Sanz (Inria, Rennes,</i> <i>France), Jean-Marc Diverrez (b<>com, Cesson-Sevigne, France), and</i> <i>Anatole Lécuyer (Inria, Rennes, France)</i>	425
Evaluating Mixed and Augmented Reality: A Systematic Literature Review (2009 – 2019) Leonel Merino (VISUS, University of Stuttgart, Germany), Magdalena Schwarzl (University of Stuttgart, Germany), Matthias Kraus (University of Konstanz, Germany), Michael SedImair (VISUS, University of Stuttgart, Germany), Dieter Schmalstieg (Graz University of Technology, Austria), and Daniel Weiskopf (University of Stuttgart, Germany)	438

S13 - Presence & Embodiment

Studying the Inter-Relation between Locomotion Techniques and Embodiment in Virtual Reality	
Body Weight Perception of Females Using Photorealistic Avatars in Virtual and Augmented Reality	
A Neurophysiological Approach for Measuring Presence in Immersive Virtual Environments 474 Arindam Dey (University of Queensland, Australia), Jane Phoon (The University of Queensland, Australia), Shuvodeep Saha (Central Scientific Instruments Organisation, India), Chelsea Dobbins (The University of Queensland, Australia), and Mark Billinghurst	

(University of South Australia, Australia)

S14 - XR Guidance

Guideline and Tool for Designing an Assembly Task Support System Using Augmented Reality 486

Keishi Tainaka (Nara Institute of Science and Technology, Japan), Yuichiro Fujimoto (Nara Institute of Science and Technology, Japan), Masayuki Kanbara (Nara Institute of Science and Technology, Japan), Hirokazu Kato (Nara Institute of Science and Technology, Japan), Atsunori Moteki (Front Technologies Laboratory, Fujitsu Laboratories Ltd., Japan), Kensuke Kuraki (Fujitsu Laboratories Ltd., Japan), Kazuki Osamura (IoT Systems Laboratory, Fujitsu Laboratories Ltd., Japan), Toshiyuki Yoshitake (Fujitsu Laboratories Ltd., Japan), and Toshiyuki Fukuoka (Fujitsu Laboratories Ltd., Japan)

S15 - Collaboration

 View Splicing for Effective VR Collaboration	09
 Evaluating Remote Virtual Hands Models on Social Presence in Hand-Based 3d Remote Collaboration	20
Collaborative Augmented Reality on Smartphones via Life-Long City-Scale Maps	33
Collabovr: A Reconfigurable Framework for Creative Collaboration in Virtual Reality	42

S16 - VR Experiences & Studies

Enhancing Participation Experience in VR Live Concerts by Improving Motions of Virtual Audience Avatars
Virtual Reality Racket Sports: Virtual Drills for Exercise and Training
Perspective Matters: Design Implications for Motion Guidance in Mixed Reality
3D Hand Pose Estimation with a Single Infrared Camera via Domain Transfer Learning
Automatic Generation of Diegetic Guidance in Cinematic Virtual Reality
S17 - Walking in XR
Walking and Teleportation in Wide-Area Virtual Reality Experiences
Rock or Roll - Locomotion Techniques with a Handheld Spherical Device in Virtual Reality 618 David Englmeier (LMU Munich, Germany), Fan Fan (LMU Munich, Germany), and Andreas Butz (LMU Munich, Germany)
The Cognitive Load and Usability of Three Walking Metaphors for Consumer Virtual Reality 627 Chengyuan Lai (The University of Texas at Dallas, USA) and Ryan P. Mcmahan (University of Central Florida, USA)
 Visual-Auditory Redirection: Multimodal Integration of Incongruent Visual and Auditory Cues for Redirected Walking
Comparing World and Screen Coordinate Systems in Optical See-Through Head-Mounted Displays for Text Readability While Walking

Tokyo, Japan), and Ari Hautasaari (The University of Tokyo, Japan)

S18 - AR in Medicine

Landmark-Based Mixed-Reality Perceptual Alignment of Medical Imaging Data and Accuracy Validation in Living Subjects
Supporting Medical Auxiliary Work: The Central Sterile Services Department as a Challenging Environment for Augmented Reality Applications
An Intelligent Augmented Reality Training Framework for Neonatal Endotracheal Intubation 672 Shang Zhao (George Washington University, Washington, USA), Xiao Xiao (George Washington University, USA), Qiyue Wang (George Washington University, USA), Xiaoke Zhang (George Washington University, USA), Wei Li (The George Washington University, USA), Lamia Soghier (Children's National Medical Center, Washington, USA), and James Hahn (George Washington University, USA)
CatARact: Simulating Cataracts in Augmented Reality
S19 - Applications
Extracting Velocity-Based User-Tracking Features to Predict Learning Gains in a Virtual Reality Training Application
HydrogenAR: Interactive Data-Driven Presentation of Dispenser Reliability

Science Center, National Renewable Energy Lab, Golden, Colorado, USA)

An In-Depth Exploration of the Effect of 2D/3D Views and Controller Types on First Person Shooter Games in Virtual Reality	713
Diego Vilela Monteiro (Xi'an Jiaotong-Liverpool University, China),	
Hai-Ning Liang (Xi'an Jiaotong-Liverpool University, China), Jialin	
Wang (Xi'an Jiaotong-Liverpool University, China), Hao Chen (Xi'an	
Jiaotong-Liverpool University, China), and Nilufar Baghaei (Massey	
University, New Zealand)	

Author Index		
--------------	--	--