2020 IEEE International Symposium on Workload **Characterization (IISWC 2020)**

Beijing, China 27 – 29 October 2020

IEEE Catalog Number: CFP20236-POD ISBN:

978-1-7281-7646-8

Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP20236-POD

 ISBN (Print-On-Demand):
 978-1-7281-7646-8

 ISBN (Online):
 978-1-7281-7645-1

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2020 IEEE International Symposium on Workload Characterization (IISWC) **IISWC 2020**

Table of Contents

essage from General Chairs	
essage from Program Chairs	
ogram Committee	
ganizing Committee	
eering Committee	
ynotes	xvi
ession 1: Large-Scale Systems	
colo: Power Optimized Colocation in Power Constrained Environments	1
etSim: Simulating Large-Scale Heterogeneous Systems using a Trace-Driven, Synchronization of Dependency-Aware Framework	
**C-MixPBench: An HPC Benchmark Suite for Mixed-Precision Analysis	25
In-Depth Analysis of Cloud Block Storage Workloads in Large-Scale Production	37

Characterizing the Scale-Up Performance of Microservices Using TeaStore
MATCH: An MPI Fault Tolerance Benchmark Suite
CPU Microarchitectural Performance Characterization of Cloud Video Transcoding
Session 2: Benchmarking, Evaluation, and Simulation Methodologies
A Rigorous Benchmarking and Performance Analysis Methodology for Python Workloads
Reliability Modeling of NISQ-Era Quantum Computers
CPI for Runtime Performance Measurement: The Good, the Bad, and the Ugly
High Frequency Performance Monitoring via Architectural Event Measurement
Port or Shim? Stress Testing Application Performance on Intel SGX Aisha Hasan (Carnegie Mellon University in Qatar), Ryan Riley (Carnegie Mellon University in Qatar), and Dmitry Ponomarev (Binghamton University, USA)
Characterizing the Impact of Last-Level Cache Replacement Policies on Big-Data Workloads 134 Alexandre Valentin Jamet (Barcelona Supercomputing Center), Lluc Alvarez (Barcelona Supercomputing Center; Universitat Politècnica de Catalunya), Daniel A. Jiménez (Texas A&M University), and Marc Casas (Barcelona Supercomputing Center)
Session 3: Machine Learning and Systems
AI on the Edge: Characterizing AI-Based IoT Applications Using Specialized Edge Architectures

Cross-Stack Workload Characterization of Deep Recommendation Systems	57
A Case for Generalizable DNN Cost Models for Mobile Devices	69
Empirical Analysis and Modeling of Compute Times of CNN Operations on AWS Cloud	81
A Sparse Tensor Benchmark Suite for CPUs and GPUs	93
Demystifying Power and Performance Bottlenecks in Autonomous Driving Systems	05
Session 4: System Architecture and Applications	
Evaluation of Graph Analytics Frameworks Using the GAP Benchmark Suite	16

A Study of APIs for Graph Analytics Workloads	
Vertex Reordering for Real-World Graphs and Applications: An Empirical Evaluation	
Scalable and Fast Lazy Persistency on GPUs	
Accelerating Number Theoretic Transformations for Bootstrappable Homomorphic Encryption on GPUs	
Reconfigurable Accelerator Compute Hierarchy: A Case Study Using Content-Based Image Retrieval	
Selective Event Processing for Energy Efficient Mobile Gaming with SNIP	
Author Index	