2020 IEEE Learning With MOOCS (LWMOOCS 2020)

Antigua Guatemala, Guatemala 30 September – 2 October 2020

IEEE Catalog Number: ISBN:

CFP20Q10-POD 978-1-7281-9729-6

Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP20Q10-POD
ISBN (Print-On-Demand):	978-1-7281-9729-6
ISBN (Online):	978-1-7281-9728-9

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2020 IEEE Learning With MOOCS (LWMOOCS)

Table of Contents

Page range

The Application of Ranking Task in Mechanical Engineering Drawing Teaching Strategy	1–3
Analysis of Repeat Learners in Computer Science MOOCs	4–7
Teachers' skills required to design and deliver MOOCs in Engineering Education	8–13
Integrating the evaluation of out of the platform autoevaluated programming exercises with personalized answer in OpenEdx	14–18
Educational Robotics for all gender, diversity, and inclusion in STEAM	19–24
Participation of Latin America in MOOCs: Exploring Trends Across Providers	25–30
Designing Hybrid Learning Programs in Higher Education by Applying Education 4.0: The Innovation Challenge Bootcamp as Case Study	31–36
Students' Satisfaction of a Design Thinking MOOC with Personalized Learning Objectives	37–41
Improving the Scalability of MOOC Platforms with Automated, Dialogue-based Systems	42–46
MOOC, OER for digital citizenship and inclusion	47–52
Key Aspects for the Implementation of Virtual Mobility	53–57
On the Potential of Automated Downloads for MOOC Content on Mobile Devices	58–63
Online Mathematics Education Outreach: Designing for Global, Open Access	64–67
Impact of Course Delivery Mode on Learner Engagement in MOOCs	68–72
MOOC and professional skills development: Enhancing public speaking competence with international teams through Google Classroom.	73–76
Content analysis in the training of engineers for the design of MOOCs	77–80
Classroom Engagement Observation using Deep Learning	81–83
Are Performance Prediction Models in MOOC General: Perspective from Big Data	84–89
Early childhood online education in the COVID-19 context. Behavioral Patterns for User Interface Design	90-95
Designing a MOOC to prepare faculty members to teach on virtual learning environments in the time of COVID-19	96-99
Learning Alone yet Together: An Exploratory Study of the Interaction through Online Danmaku Videos	100-104
MOOC Assessment: a comparison between online assessment and face to face practical assessment	105–111
Digital Transformation in Academic Society and Innovation Ecosystems in the World beyond Covid19-Pandemic	112–117
The 5th Wave and i-Sustainability Plus Theories as Solutions for SocioEdu Consequences of Covid-19	118–123
The Search for the MOOC Credit Hour	124–130
Introducing knowledge based augmented reality environment in engineering learning – a comparative study	131–143
Using MOOCs for Developing Skills of Enginners	144–147
When Do Learners Rewatch Videos in MOOCs?	148–151
Electronic, Optical, and Magnetic Properties of Materials: A Comic-Based MOOC	152–155
Teaching Online in 2020: Experiments, Empathy, Discovery	156–161
Evaluating Students' Aprehension About Remote Learning During the COVID-19 Pandemic: a Brazilian Sample	162–167
The importance of formative assessment and the different role of evaluation in MOOCS	168–173
Hybrid Flexible Learning with MOOCs: A Proposal to Reconceptualise the COVID19 Emergency Beyond the Crisis	174–179
ALGORITHMS FOR THE DEVELOPMENT OF DEEP LEARNING MODELS FOR CLASSIFICATION AND PREDICTION OF BEHAVIOUR IN MOOCS.	180–184
OXALIC: an Open edX Advanced Learning Analytics Tool	185–190
The rise of webinars: thousands of learners looking for professional development. A practical case study.	191–194
Reacting to COVID-19 campus imminent closure: Enabling remote networking laboratories via MOOCs	195–200
Investigating the feasibility of using Video Lecture Capturing as a teaching and learning tool: A case of a rural university in the Eastern Cape, South Africa.	201–206
Towards identifying emotional human behavior in online classes: first steps	207-210