PROCEEDINGS OF SPIE

Integrated Photonics Platforms: Fundamental Research, Manufacturing and Applications

Roel G. Baets Peter O'Brien Laurent Vivien Editors

6–10 April 2020 Online Only, France

Sponsored by SPIE

Cosponsors

City of Strasbourg (France) • Eurometropole (France) • CNRS (France) • Région Grand Est (France) iCube (France) • Université de Strasbourg (France)

Cooperating Organisations

Photonics 21 (Germany) • EOS – European Optical Society (Germany) • Photonics Public Private Partnership (Belgium) • Photonics France (France)

Published by SPIE

Volume 11364

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:
Author(s), "Title of Paper," in Integrated Photonics Platforms: Fundamental Research,
Manufacturing and Applications, edited by Roel G. Baets, Peter O'Brien, Laurent Vivien, Proceedings
of SPIE Vol. 11364 (SPIE, Bellingham, WA, 2020) Seven-digit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510635005

ISBN: 9781510635012 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445 SPIF org

Copyright © 2020, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/20/\$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

V Vii	Authors Conference Committee
	OPTICAL MODULATION
11364 02	III-V/Si hybrid optical modulators based on MOS capacitor (Invited Paper) [11364-1]
11364 03	Optimization of deep rib high speed phase modulators on 300mm industrial Si-photonics platform [11364-2]
11364 05	Dual comb spectroscopy using silicon electro-optical modulators [11364-4]
11364 06	Si capacitive modulator integration in a 300mm silicon photonics platform with strained-SiGe to enhance the electro-optic effect [11364-5]
	MACHINE-/DEEP LEARNING AND NEUROMORPHIC COMPUTING
11364 08	Design of multi-parameter photonic devices using machine learning pattern recognition (Invited Paper) [11364-7]
	OPTICAL INTEGRATION
11364 OH	SiN photonic integrated circuit designed to evaluate its interaction with a hologram for an Augmented Reality application [11364-17]
11364 01	High-speed electronics for silicon photonics transceivers (Invited Paper) [11364-18]
11364 OJ	Integrated photonic look-up memory architectures to relieve the memory bottlenecks (Invited Paper) [11364-19]
	NONLINEAR INTEGRATER STRUCTURES
	NONLINEAR INTEGRATED STRUCTURES
11364 ON	Optical frequency comb generation using low stress CMOS compatible reactive sputtered silicon nitride waveguides [11364-66]

	PLATFORMS AND PILOT LINES
11364 OS	Key technology developments of active optical package (AOP) substrate for co-packaging of silicon photonics (Invited Paper) [11364-27]
	LIGHT MANIPULATION
11364 13	Large quality factors in whispering gallery mode resonators with small mode volume [11364-40]
11364 14	Development of integrated photonics based on SiO ₂ :TiO ₂ sol-gel derived waveguide layers: state of the art, perspectives, prospective applications [11364-41]
11364 15	Moiré effects in subwavelength gratings: apodized structures for visible band optical applications [11364-42]
	MID-IR PHOTONICS
11364 1D	Port analysis using S-matrix for 2D metasurface waveguide coupler in mid-IR application [11364-50]
	POSTER SESSION
11364 11	Realization of high efficiency ultrasound-powered micro-LEDs for optogenetics [11364-55]
11364 1J	Integrated electro-optic tunable power splitter based on microring resonators having interleaved PN junctions [11364-56]
11364 1K	Parameter extraction of silicon photonic devices using optical coherence tomography [11364-57]
11364 1N	Design of electro-optical tristate buffer and tristate inverter for high speed optical interconnect [11364-60]
11364 10	Design of incrementer and decrementer device for optical computing [11364-61]
11364 1Q	Silicon nitride based devices: lithographic mask roughness mitigation [11364-63]
11364 1R	Analysis of integrated optical device with microfluidic channel for sensing application [11364-64]
11364 1T	About monitoring the dynamics of phase transition in food and biology by micro-photonics: