Porto, Portugal 27-30 April 2020

Pages 1-643

IEEE Catalog Number: ISBN: CFP20EDU-POD 978-1-7281-0931-2

Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP20EDU-POD
ISBN (Print-On-Demand):	978-1-7281-0931-2
ISBN (Online):	978-1-7281-0930-5
ISSN:	2165-9559

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Title Iable of Contents	Page range
Desired Describe with Industry as a Learning Otestamy for International Family and Family and the	
Project-Based Learning with Industry as a Learning Strategy for Improvement Engineering Education	1–2 3–7
Work-in-Progress: Towards detection and syntactical analysis in UML class diagrams for software engineering education	3-7 8-11
Work-in-Progress: Internet Marketing Simulation for Project-Based Learning μLAB A remote laboratory to teach and learn the ATMega328p μC	12–13
Work-in-Progress: Soft-skills Development for Higher Education Engineering and Economic Students using HERA Collaborative Serious Games	12-13
Introducing Robotics to an English for Academic Purposes Curriculum in Higher Education: The Student Experience	20-21
Work-in-Progress: A Student-Centered Learning Environment for Foundation Computer Science Online Courses	N/A
A demo platform to teach and learn the behaviour of a PI controller	26–27
Work-in-Progress: Encouraging Girls in Science, Engineering and Information Technology	28–32
Work in Progress: Competence Building in Engineering Education in Mongolia	33–36
Internationalised Master Degree Education in Nanoelectronics in Asian Universities	37–40
Work-in-Progress: Pedestrian bridge application in a Fundamentals of Structural Analysis course inside an Architecture bachelor program	41–45
Work in Progress: Exploring teamwork and inclusivity amongst engineering students at a South African university	46–50
Effect of Multinational Projects on Engineering Students through a Summer Exposure Research Program	51–55
Mapping the Students' Journey to Develop Student-Centered Tools	56–60
Smart Technology to Improve Cultural and Gender Diversity in Engineering Education	61–65
Fostering metacognitive process using Active Learning in a Mechatronic Engineering Course	66–71
V-LAB – The Virtual Electric Machines Laboratory	72–77
Problem-Solution Patterns in the Introductions of Chemical Engineering Research Articles: Pedagogical Insights	78–84
Applied Physics Laboratory: A novel methodology	85–90
IoT as an Introduction to Computer Science and Engineering: A Case for NodeMCU in STEM-C Education	91–95
Which Strategies are Used in the Design of Technical LA Infrastructure?: A Qualitative Interview Study	96–105
Low-cost Remote Laboratory Concept based on NI myDAQ and NI ELVIS for Electronic Engineering Education	106–109
Flipped classroom in a CS1 course	110–114
Rethinking Quantitative Skills in a Data-Driven Society: A View from the Middle East	115–119
Enhancing the Psychological Dimension of Academic Advising via Implementing CliftonStrengths Themes	120–126
An Eye-Tracking Project in Industrial Design Education: A case study for Engaging in the Research Process	127–132
STEM 3.0 for Chinese Students with Sea Perch Underwater Robots: An Experimental Summer Camp for Hands-on Thinkers in Shanghai	133–138
Challenges of Academic Mobility in View of Students Inclusion in Engineering Education	139–144
Fostering students' analytical thinking and applied mathematical skills through 3D design and printing	145–149
Sustainable product design education: engineering students' perceptions and attitudes	150-157
Collaborative virtual community to share class plans for STEAM education	158–163
Deep learning practice for high school student engagement in STEM careers	164–169
Calculation of the Hubble Universe Expansion Constant by Analyzing Observational Data: An Exploratory Teaching Proposal based on STEM Epistemology	170–177
Support prospect of success in mathematics for first-year students in engineering	178–182 183–191
Automated Authentic Assessment Applied to an Undergraduate Course in Network and System Administration	192–196
"Should I Add 'Computer Science Education' to My Tinder(TM)-Bio?": An Investigation of Teacher Candidates' Stereotyping Modern Serious Board Games: modding games to teach and train civil engineering students	192-190
Software Engineering Education: Challenges and Perspectives	202–209
How Challenge Based Learning enables entrepreneurship.	210-213
RoboSTEAM Project Systematic Mapping: Challenge Based Learning and Robotics	210 210
Why Disciplinary Culture Matters: Lessons Learned from 7 Years of Internationalization in Engineering Education	222–226
Role of design and research work of hearing impaired students while mastering natural sciences at technical university in developing their cognitive skills	227–235
Learning-by-Doing as an Educational Method of Conducting Experiments in Electronic Physics	236–241
Developing English Language Competence for Global Engineers	242–249
Transferring Research on IoT Applications for Smart Buildings into Engineering Education	250-254
A Review of Personal Teaching Environments to Support Teaching Activities	255–263
On the Acceptance and Effects of Recapping Self-Test Questions in MOOCs	264–272
Involvement of students in online master's studies of Engineering and Science: a path to minimize the gender gap in STEM	273–278
Study of Wave Motion and Teaching Methods in Engineering Problem Solving Course	279–283
Providing Feedback for Students in E-Learning Systems: a Literature Review, based on IEEE Explore Digital Library	284–289
Emídio Garcia School Pilot description: A Robosteam Erasmus+ Project Activity based on a Challenge based Learning Approach	290–294
Influence of Problem-Based Learning on Student Performance	295–299
Active Learning Behavior of Men and Women in MOOC Discussion Forums	300–307

Title Iable of Contents	Page range
Foundation Courses' Soft Skills Evaluation using Fuzzy Cognitive Maps	308–314
Biomedical students' motivation with project-based learning: a case study	315–318
Analysing Exam Results – Developing a Methodology	319–322
Teaching Network Covert Channels using a Hands-on Approach	323–328
Automated Measurement of Competencies and Generation of Feedback in Object-Oriented Programming Courses	329–338
Interdisciplinary Education - The Case Of Bio Medical Signal Processing	339–343
Elemem: Interactive Digital Card Game for Chemistry	344–348
Work in Progress: Hardware Development for a Remote Lab Platform to Investigate Grasping Scenarios of Robotic Grippers	349–353
Non-Technical skills needed by cybersecurity graduates	354–358
Training needs for a PhD programme in Engineering Education	359–363
A Concept for Addressing Abstract Thinking Competence While Teaching Software Development	364–373
STR-SA: Session-based Thread Recommendation for Online Course Forum with Self-Attention	374–381
Practical Framework for Problem-Based Learning in an Introductory Circuit Analysis Course	382–391
MuLE - a Multiparadigm Language for Education	392–401
Stack Overflow – Informal learning and the global expansion of professional development and opportunities in programming?	402–408
Curriculum for Business Information Technology Studies at BSc and MSc Levels – Observations from a Long-term Educational Endeavour	409–418
Investigating the Timeliness and Quality of Assessment Feedback in a Computing Laboratory using a Custom Application	419–428
Trauma Narrative for Civil Engineering Students: A Case Study on Hydrometeorological Disaster Victims in Malaysia	429-433
Virtual Ecological Laboratory to develop a PV module recycling workshop	434–441
The Future of Things: Simulations and Next Generation Manufacturing	442–446
Detecting Learner Engagement in MOOCs using Automatic Facial Expression Recognition	447–456
Visual block programming languages and their use in educational robotics	457–464
Positive Effects of Summer Research Program on Diverse Community College Students	465–471
Two Cs of Signals and Systems that should be taught initially in Discrete Time: Causality & Convolution	472–476
Student-Centered Engineering Education: The Renewable Energy Case	477–486
Sail Car - An EPS@ISEP 2019 Project	487–492
Problem based learning for teaching new technologies	493–496
Hands-On Power Electronics Course - deep understanding by combination of simulation, calculation and practical measurements	497–503
Bringing Students and Companies together by means of Project development	504–511
Improving the Flipped Classroom Model by the Use of Inductive Learning	512-520
Teaching Triangle Rigidity to K-12 Students with Applications to Civil Engineering	521–524
Strategies for Teaching Industry-Specific English and German Terminology to Engineering Students	525-529
Experiments in Active Learning through Project Across Courses	530–539
A hierarchical RNN-based model for learning recommendation with session intent detection	540–547
Digitization of a Lecture – An Experience Report	548–553
STEM Educator challenges and professional development needs: the educators' views	554–562
Teacher education in engineering design through practice in reverse engineering and making	563–567
Overseas Use of a Remote Laboratory	568–573
"Yo quiero ser científica" a creative way to inspire girls in science	574–578
Technical projects with social commitment for teaching-learning intervention in STEM students	579–586
Methodology for training engineers teamwork skills	587–591
Insights in Students' Problems during UML Modeling	592-600
Providing competencies through practical activities for future engineering students	601–604
Development and Evaluation of an Assessment Tool for Self-Reflection	605–612
Lack of adoption of education technology on an instant student and lecturer feedback system	613–621
Evaluation of Decision-making Quality Using Multi-attribute Decision Matrix and Design Thinking	622–629
Collaborative Learning for Innovation Education	630–637
Metacognitive awareness and Creative Thinking: the capacity to cope with uncertainty in engineering	638–643
Becoming Fully Operational: Employability and the Need for Training of Computer Science Graduates	644–651
Semestre i as an Active Methodology to modify the Teaching-Learning Process in Engineering	652–666
Using Knowledge Networks to Support the Student's Learning Initiative	667–672
Succesful Strategies for the attraction of more women into Engineering in Southern Mexico	673–678
Addressing Students' Creativity in Algorithm Design	679–684
Behaviour Patterns of Learners while Solving Programming Task: an Analysis of Log Files	685–690

Title Iable of Contents	Page range
Potentializing the problem-solving competence in programming courses through a practice-based learning + tutoring strategy	691–697
A hybrid flipped-learning model and a new learning-space to improve the performance of students in Structural Mechanics courses	698–703
The Effect of Mandatory Assignments on Students Learning Outcome and Performance in Introductory Programming Courses	704-712
Reconfigurable web-interface remote lab for instrumentation and electronic learning	713–717
Initiative to Increment the number of Women in STEM Degrees: Women, Science and Technology Chair of the Public University of Navarre	718–721
The concepts of Linear Algebra present in Industrial Robotics: integrative designs and applications	722-726
Engaging Students in Research: a Comparative Case Study Between Engineering and Business	727-733
Designing a Competency-oriented Prep Course for First-Year CS Students	734–740
Engineers' job - related perceptions of empathy in Germany	741–745
Performance of college students in a statistics course using mastery learning	746–751
Associative Media Learning Using Smartwatches	752-755
The Open Design education approach - an integrative teaching and learning concept for management and engineering	756–762
Embedded cluster platform for a remote parallel programming lab	763–772
Effects of a Hackathon on the Motivation and Grades of CS1 Students	773–778
THE PERCEPTION AND THE KNOWLEDGE OF ENGINEERING TEACHERS ABOUT THE STRUCTURATION OF THE PROJECT BASED LEARNING	779–786
RECoNE: A Remote Environment for Computer Networks Education	787–791
Challenge-Based Learning and Traditional Teaching in Automatic Control Engineering Courses: a Comparative Analysis	792–798
Service Learning with Impact: How Engineering Students and People with Disabilities Acquire Future Skills	799–807
Teaching Technical Journalism with an Engineering Foundation	808-813
Mechatronic TVET Student Development Using Project Approach for In-depth Learning	814-818
Using Learning Styles to Accommodate for Heterogeneous Groups of Learners in Software Engineering	819-826
Applying Data Analysis to Identify Early Indicators for Potential Risk of Droupout in CS Students	827-836
Report of a CS1 Course for Computer Engineering Majors Based on PBL	837-846
Learning Platform for Power Quality Surveillance	847-851
Augmented Reality and Matlab® for Visuospatial Competence Development	852-858
Gamification in STEM programming courses: State of the art	859-866
Students' integration in Engineering degrees: Mathematics Support Center (CeAMatE) Product-based Learning using CES EduPack in Undergraduate Engineering Courses	867–870 871–877
Application of PBL in ERP Textbook Design and Technical University Students Learning Effectiveness Study	878-884
Challenge-Based Learning (CBL) in Engineering: which evaluation instruments are best suited to evaluate CBL experiences?	885-893
Examples of authentic assessments in engineering education	894-897
Study methods in introductory programming courses	898–904
	905-912
Sustaining complex projects by linking in- and off-curriculum elements: The BRSU Racing Engineer Certificate	913–918
Use of XR technologies to bridge the gap between Higher Education and Continuing Education C4 model in a Software Engineering subject to ease the comprehension of UML and the software development process	919-924
Closing the Theory-Practice Gap: Psychologically-Based Laboratory Course in Electrical Engineering	925-930
Technical Setup of an Inverted Virtual Classroom	925-930
Mechanisms for Intercultural Competence Development for Engineering Students	938–942
	943-947
Building Resilience in Engineering Students: Rube Goldberg Machine Massive Challenge Scrum Higher Education – The Scrum Master Supports as Solution-focused Coach	943-947
Teaching 3D Printing Technology Hands-on	946-952 953-957
Equalizing Opportunities of First Year Students of Engineering Faculties by Improving Their Knowledge of Mathematics	
A Systematic Quantitative and Qualitative Analysis of Participants' Opinions on Peer Assessment in Surveys and Course Forum Discussions of MOOCs	958-961
	962-971
Support to Construct Work Process Knowledge in Blended Work-process-oriented Learning	972–979 980–987
Architecture Proposal for Micro-learning Application for Learning and Teaching Programming Courses Integration of circular economy principles for developing sustainable development competences in higher education: an analysis of bachelor construction	988–996
	997-1000
Increasing student motivation in computer programming with gamification	
A Taxonomy of Engineering Attributes for Tackling Humanitarian Challenges	1001–1006 1007–1012
Demystifying Humanitarian Engineering: A comparative study on perceptions in UK and Asia	
Using Transmedia Approaches in STEM Predicting students' performance using survey data	1013–1016 1017–1023
Supporting Teachers for Innovative Learning in Smart Schools using Internet of Things	1024-1030
Virtual Reality as a tool for active learning and student engagement: industrial engineering experience	1031-1037
Key factors of subjective well-being index in engineering students	1038–1043

Title Iable of Contents	Page range
Design Of Interactive Learning Cyber-Physical Tools for Mechanical Design Engineering Courses	1044–1048
Predicting performance with AI, a new tool for teachers and students	1049–1054
Engaging a Calculus course with Telepresence through Gamification	1055–1059
Enhacing ABET problem solving and function on a team with a Programming Methodology	1060-1064
Problem-based learning for Data Science: The Da.Re Approach	1065–1071
Questionnaire-based Evaluation of a Block scheduled instruction in computer engineering	1072-1078
A living lab for professional skills development in Software Engineering Management at U.Porto	1079–1085
Computer-supported Collaborative Learning in Programming Education: A Systematic Literature Review	1086–1095
DEVELOPING QUALITY ASSURANCE FOR WORK PLACEMENT IN HIGHER EDUCATION	1096–1101
Approaches to Assessing the level of Engineering Students' Sustainable Development Mindset	1102-1109
DEVELOPING STUDENTS' INTERCULTURAL COMPETENCE DURING THE PROFESSIONAL ORIENTED COURSE IN ENGLISH AS A FOREIGN	1110–1114
Enhancing Multicultural and Global Literacy through Computer Science Gaming	1115–1118
Cloud and WebRTC based Laboratory Solution for Practical Work in Computer Science for a Traditional University	1119–1124
Game-based learning approach to cybersecurity	1125–1132
3D Printing in Education: an European perspective	1133–1138
A multigenerational approach to Project Management: implications for Engineering Education in a smart world	1139–1148
Concept Maps and Self-Regulated Learning: an Exploratory Study	1149–1158
Engaging professional competencies through gamification	1159–1163
ENGAGING ENGINEERING STUDENTS IN CULTURAL DIVERSITY AND UNITY STUDIES	1164–1167
Identifying Cheating Users in Online Courses	1168–1175
Continuous Professional Development for Secondary Education Teachers to adopt Next Generation Digital Learning Environment Platforms	1176–1182
Thermographic Data Acquisition System for Livestock Applications: PBL approach	1183–1186
An investigation into the effects of gamification on students' situational interest in a learning environment	1187–1192
Framework of an Active Learning Python Curriculum for First Year Mechanical Engineering Students	1193–1200
Application of learning analytics to study the accuracy of self-reported working patterns in self-regulated learning questionnaires	1201–1205
Real-time modeling of abnormal physiological signals in a Phantom for Bioengineering Education	1206–1211
Teaching Supramolecular Chemistry with Microfluidic Techniques	1212–1216
Development of a Gamified Educational Framework to Teach Mechanical Engineering to High School Students	1217–1224
Beyond Creativity: Reflection and Practice of Imagination with Students of Technical Universities	1225-1229
Bridging the gaps in engineering curriculum through systems engineering approach	1230–1236
Introduction of Data Literacy in the Undergraduate Engineering Curriculum	1237–1245
Analyzing Learning Outcomes for a Massive Online Competition through a Project-Based Learning Engagement	1246-1251
Perception of the gender gap in computer engineering studies: a comparative study in Peru and Argentina	1252-1258
Playful Computer Science for Girl Scout Juniors	1259–1265
Ways and Benefits of Closing the Gap: Aligning Language and Communication Teaching with the Technical Curriculum	1266-1271
Modern Mechatronics and Robotics Education Program: Border Cooperation between Estonia and Russia	1272-1277
Software Startup formation in an experiential-based course – An Empirical Investigation of Students' Motivations	1278–1285
Online Drone Education, a Mapping Review	1286-1289
Building Methodologies for Teaching Transversal Skills to Future Engineers	1290-1298
Experiencing the Sheffield Team Software Project: A project-based learning approach to teaching Agile	1299–1305
Experience with teaching with BBC micro:bit	1306–1310
SWitCH: A Reskilling Program in Information Technology	1311–1315
Introducing Engineering Undergraduate Students to Network Management Techniques: a Hands-on approach using the Citylab Smart City	1316–1324
Analysing and Improving mathematical formulation of WEBAVALIA: A self and peer assessment tool	1325–1332
A Low-Cost Remote Laboratory for Photovoltaic Systems to Explore the Acceptance of the Students	1333–1337
Validation of instruments to measure social entrepreneurship competence. The OpenSocialLab project	1338–1342
Use of emerging technologies for the proposal and design of a course on the development of social entrepreneurship competencies	1343–1346
Entrepreneurial barriers perceptions of Information Technology students	1347–1351
INTEGRATING SOFT SKILLS INTO ENGLISH LANGUAGE TEACHING IN ENGINEERING EDUCATION	1352–1356
Proposal of an educational strategy to bring students in telecommunications and networks back to the fundamentals of the discipline	1357–1360
Cybersecurity Education and Skills: Exploring Students' Perceptions, Preferences and Performance in a Blended Learning Initiative	1361–1369
Sustainability as a theme of interdisciplinarity between design and engineering courses	1370–1376
Understanding Fundamentals of Transistor Amplifiers by Mathematical Interactive Visual Modeling with GeoGebra	1377–1380
Towards the development of learner autonomy of Portuguese mechanical engineering students	1381–1386

ngaging students in engineening courses with mathematics and robotics in bensitus of Coding. A University-Instance to Address the UK's Digital Skills Crisis 1400–14 Interpreneurship Education through Sustainable Value Creation 1404–14 Stumanied Synchronous Freedback Workbench, Learning Object for the Electrical Machines Laboratory 1418–14 Interpreneurship Education through Sustainable Value Creation 1408–14 Interpreneurship Education through Sustainable Value Creation 1428–14 Interact Academic Success 1444–14 The Effects of Molivation in Student Academic Success 1444–14 Interact Academic Success 1444–14 Interact Student International Molliship: Usaning dominant in a sustainable way 1428–14 Interact Academic Success 1444–14 Interact Student International Molliship: Usaning dominant interact Internation 1408–14 Interact International Molliship: Usaning dominant interact Internation 1471–14 Interact Internation Internations Internations Internation Internation Internation Internation Internation Internation Internation Internations Internations Internation Internations I	Title	Page range
ha institute of Coding. À University-Industry Colaboration to Address the UK's Digital Skills Crisis Integreneursity Education through Sustinable Advance Coration Integreneursity Education through Sustinable Advance Coration Integreneursity Education Through Sustinable Advance Coration Integreneursity Education Through Advances Internet Through Sustinable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing Advances (Paperation International Mobility: tearing down barriers to mobility in a sustainable way International Mobility: tearing Advances (Paperation Internation (Paperation Internation Intersing Adva	Integration of physics, mathematics and computer tools using challenge-based learning	1387–1391
Integeneruship Education Intrough Sustainable Value Creation Integeneruship	Engaging students in engineering courses with mathematics and robotics	1392–1399
strumental Synchronous Feedback Workbench, Learning Object for the Electrical Machines Laboratory 1426-14 icituable and long-term knowledge retention with project-based learning 1428-14 extruable and long-term knowledge retention with project-based learning 1428-14 extruable and long-term knowledge retention with project-based learning 1428-14 thered & Academic International Mobility: tearing down barriers to mobility in a sustainable way 1428-14 thered & Academic International Mobility: tearing down barriers to mobility in a sustainable way 1428-14 thered & Explanations of Solutions for Unproved Student Performance 1456-14 thered Schrother Institutions Associated To Education Arias In Brazil And Their Impact In Curricular References For Modemizing Industrial Engineering Courses: A 1462-14 ducating for Diversity Management In Engineering 1478-14 ducating In Educational Android Application Teaching Programming with Java 1478-14 1476-1	The Institute of Coding: A University-Industry Collaboration to Address the UK's Digital Skills Crisis	1400–1408
lobal compretences through IDEEA Global course 1423-14 erdurable and long-term knowledge retention with project-based learning 1424-14 needed Academic International Mobility: tearing down barriers to mobility in a sustainable way 1434-14 needed Academic International Mobility: tearing down barriers to mobility in a sustainable way 1444-14 nee Effects of Motivation in Student Academic Success 1445-14 diede Explanations of Solutions for Improved Student Performance 1485-14 mixe Stacker Institutions Associated To Education Areas in Brazil And Their Impact In Curricular References For Modernizing Industrial Engineering Curses: A 1482-14 ducating for Diversity Management in Engineering 1447-14 1447-14 ducating for Diversity Management in Engineering 1447-14 1448-14 ducating for Diversity Management in Engineering 1448-14 1448-14 ducking for Diversity Management in Engineering Studional Thinking 1443-14 1448-14 ducking for Diversity Management in Engineering Studional Antivios of Engineering Studional Antivios of Engineering Studional Antivios of Engineering Studion Antivios of Engineering Studion Antivios of Control Ecuciation 1563-16 fork in Progress: Stleuth, a programming environment for testing garnification 1563-16 1562-16 fork in Progress: Modal Analysio of Engineering Studiones ac	Entrepreneurship Education through Sustainable Value Creation	1409–1415
ardurabic and long-term involvedge retention with project-based learning1424-14leanded Academic International Mobility: Isaaring down barriers to mobility in a sustainable way1434-14lease arch-based learning to attract students to Control Engineering1445-14ideo Explanations of Solutions for Improved Student Performance1451-14bit doe Explanations of Solutions for Improved Student Performance1471-14new revised definition of contract cheating,1477-14ducating for Diversity Management in Engineering1477-14reviewed definition of contract cheating,1477-14ducating for Diversity Management in Engineering1478-14ducating for Diversity Management in Engineering1478-14ducating for Diversity Management in Engineering1478-14dive in Progress: Studt, a programming environment for testing agring inflaxion1478-14fork in Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1508-15fork in Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1508-15fork in Progress: Modal Analysis of Engineering Structures Design1528-15anting By Creating Instructurol Utives: An Experience Report from a Database Course1528-15fork in Progress: Modal Analysis of Engineering Laboratory1528-15fork in progress: Multiprotocol System for Learning Industrial Communications1558-15fork in progress: Busing Education for Analysis of learning Learning Structures Design1528-15fork in progress: Learning Lea	Instrumented Synchronous Feedback Workbench, Learning Object for the Electrical Machines Laboratory	1416–1422
landed Academic International Moality: taning down barriers to mobility in a sustainable way144-1-1he Effacts of Molivation in Student Academic Success1444-1escarb-based learning to attract students is Octroll Engineering1451-14lideo Explanations of Solutions for Improved Student Performance1455-14hird Sackor Institutions Associated To Education Areas in Brazil And Their Impact In Curricular References For Modernizing Industrial Engineering1472-14new revised definition of contract cheating.1477-14ducating for Diversity Management in Engineering1473-14Jork in Progress: Task-centric Holistic Tasching Approach to Teaching Programming with Java1478-14Jork in Progress: Staukt, anogamming environment for testing gamfication1503-15Jork in Progress: Staukt, anogamming environment for testing gamfication1503-15Jork in Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1503-15Jork in Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1524-15Jork in Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1524-15Jork in Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1524-15Jork in Progress: Multiprotocol System for Learning Industrial Communications1524-15Jork in Progress: Multiprotocol System for Learning Industrial Communications1564-15Jork in Progress: Multiprotocol System for Learning Industrial Communications1564-15Jork in Progress: Multiprotocol System for Learning Industrial Communications1564-16Jork in Progress: L	Global competences through IDEEA Global course	1423–1427
he Effects of Motivation in Student Academic Success 1444-17 esearch-based learning to attract students to Control Engineering 1455-14 (de Explanations of Solutions for Improved Student Performance 1455-14 third Sector Institutions Associated To Education Areas In Brazil And Their Impact In Curricular References For Modemizing Industrial Engineering Courses: A 1482-14 test esign and Construction of Physics Laboratory Equipment and an Authentic Evaluation System as a Pedagogical Tool in the Integran Training of Engineering 1471-14 rew revised definition of contract cheating. 1478-14 tackting Progress: Task-centitie Holistic Teaching Ocmputational Tinking 1478-14 fork in Progress: Stellur, a programming environment for testing gamification 1478-14 tackting Progress: Stellur, a programming environment for testing gamification 1512-15 tagenes/biold: Protorys Stellur, a programming environment for testing gamification 1512-15 tagenes/biold: Prototype of a Low-Cost Magnetic Levitation Device for Control Education 1512-15 tagenes/biold: Prototype of a Low-Cost Magnetic Levitation Device for Control Education 1516-15 terring By Centering Students Programs Approach to Teach Microarchitecture Design 1528-16 terring By Centering Instructional Vices: An Experience Report from a Database Course 1536-16 terring Students programs and the teaching distudent terring 1528-16 tearing By Centering Instructional Vices: An Experience Report from a Database to Engineering Students 1560-16 for in progress: Multiprotocol System for Learning Industrial Communications 1564-17 for in progress: Dasing Education for Additive Manufacturing using RC Pace Car Models 1564-17 teaching Fluid Mechanics in a Virtual-Reality Based Environment 1564-16 torics: Dasing Education for Additive Manufacturing using RC Pace Car Models 1564-17 torics: Torostas a Conceptual Framework (for Multi-Campus Course Development 1564-16 for the Progress: Learning Culture of Generation Z in Informatics Circuits 1564-16 torich-Progress: Learning Cul	Perdurable and long-term knowledge retention with project-based learning	1428–1433
esearch-based learning to attract students to Control Engineering 1451–14 Ideo Explanations of Solutions for Improved Student Performance 1452–14 Inter Sector Institutions Associated To Education Areas In Brazil And Their Impact In Curricular References For Modernizing Industrial Engineering Courses: A new revised definition of contract cheating. 1472–14 ducating for Diversity Management in Engineering Ideo Explanations of Solutions for Engineering Approach to Teaching Programming with Java Ideo Diversity Management in Engineering Ideo Diversity Management for Engineering Sumutational Thinking Ideo Diversity Management for Engineering Sumutational Thinking Ideo Diversity Management for Engineering Sumutational Thinking Ideo Diversity Managemic Levitation Device for Control Education Ideo Diversity Managemic Levitation Device for Control Education Ideo Diversity Managemic Levitation Device for Control Education Ideo Diversity Sumutation Ideo Diversity Ideo Diversity Ideo Diversity Ideo Diversity Sumutation Ideo Diversity Ideo Diversity Ideo Diversity Ideo Diversity Sumutation Ideo Diversity Ideo Din Ideo Diversity Ideo Dive	Blended Academic International Mobility: tearing down barriers to mobility in a sustainable way	1434–1443
idea Explanations of Solutions for Improved Student Performance1488-1-1hird Sector Institutions Associated To Education Areas In Brazil And Their Impact In Curicular References For Modemizing Industrial Engineering Ocurses. A1462-14ever revised definition of contract cheating.1477-1-1ducating for Diversity Management In Engineering1473-1-1dork in Progress: Task-centric Holistic Teaching Approach to Teaching Programming with Java1483-1-1fork in Progress: Study. a programming environment for testing gamification1503-1-5fork in Progress: Study. a programming environment for testing gamification1512-15approxibit of a contract Colos Magnetic Levitation Device for Control Education1512-15approxibit of Taenebaum's Approach to Teach Microarchitecture Design1528-15approxibit more Taenahing Foreign Languages to Engineering Students1568-15approxibit Microarchitecture Design1568-16approxibit Microarchitecture Design1568-16approxibit Microarchitecture Microarchitecture Design1568-16approxibit Microarchitecture Microarchitecture Design1568-16approxibit Microarchitecture Microarchitecture Design1568-16fork in Pro	The Effects of Motivation in Student Academic Success	1444–1450
hird Sector Institutions Associated To Education Areas In Brazil And Their Impact In Curricular References For Modernizing Industrial Engineering Courses: A 1462-14 esign and Construction of Physics Laboratory Equipment and an Authentic Evaluation System as a Pedagogical Tool in the Integral Training of Engineering 1471-14 enverweide difficient of contract cheating. 1478-14 ducating for Diversity Management In Engineering 1483-14 fork in Progress: Task-centic Hollisits Teaching Approach to Teaching Programming with Java 1483-14 fork in Progress: Modul Analysis of Engineering Structures Based on a Remote Laboratory 1500-15 fork-in-Progress: Modul Analysis of Engineering Structures Based on a Remote Laboratory 1508-15 approxibility of engineering students' preparation for active learning considering the study methods 1512-15 Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design 1564-15 Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design 1564-15 Tork in progress: Multiprotocol System for Learning Industrial Communications 1564-15 fork in progress: Design Education for Additive Manufacturing using RC Race Car Models 1559-15 fork in Progress: Design Education For Additive Manufacturing using RC Race Car Models 1564-15 fork in Progress: Learning Cource of Design AND Validation 1573-	Research-based learning to attract students to Control Engineering	1451–1457
esign and Construction of Physics Laboratory Equipment and an Authentic Evaluation System as a Pedagogical Tool in the Integral Training of Engineering 1471-14 new revised definition of contract cheating. 1478-14 ductating to Diversity Management In Engineering Computational Thinking 1483-14 fork in Progress: Task-centric Hollistic Teaching Approach to Teaching Programming with Java 1483-14 fork in Progress: Studh, a programming environment for testing gamification 1503-15 fork in Progress: Studh, analysis of Engineering Structures Based on a Remote Laboratory 1503-15 fork in Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory 1503-15 langisto of engineering students: preparation for active learning considering the study methods 1512-15 araming by Creating Instructional Videos: An Experience Report from a Database Course erraing By Creating Instructures Wideos: An Experience Report from a Database Course erraing By Creating Instructures Videos: An Experience Report from a Database Course erraing By Creating Instructures Best Course to Course 1558-15 fork in progress: Multiprotocol System for Learning Industrial Communications 1564-16 fork in progress: Design Education for Additive Manufacturing using RC Race Car Models eaching Fluid Mechanics in a Vitta-Reality Based Environment 1563-15 fork-in Progress: Design Education for Additive Manufacturing using RC Race Car Models eaching Fluid Mechanics in a Vitta-Reality Based Environment 1563-15 fork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development <i>Infective Industry Ready IoT Applied Curseware</i> – Teaching IoT Design AND Validation 1579-15 divin-Progress: Towards a Conceptual Framework for Multi-Campus Course Development <i>Infective Industry Ready IoT Applied Curseware</i> – Teaching IoT Design AND Validation 1579-15 divin-Progress: Towards a Conceptual Framework for Multi-Campus Course Development <i>Iofx-in-Progress: Learning Culture Generation 2</i> In Informatics 1568-16 divine Progress: Learning Culture Generati	Video Explanations of Solutions for Improved Student Performance	1458–1461
new revised definition of contract cheating. 1478-14 ducating for Diversity Management in Engineering 1483-14 (b7k) in Progress: Task-centric Holisit Teaching Computational Thinking 1483-14 (b7k) in Progress: Steuth, a programming environment for testing gamification 1503-15 (b7k)-In Progress: Steuth, a programming environment for testing gamification 1503-15 (b7k)-In Progress: Steuth, a programming environment for testing gamification 1512-15 (b7k)-In Progress: Mulal Analysis of Engineering Structures Based on a Remote Laboratory 1508-15 (b7k)-In Progress: Mulal Analysis of Engineering Structures Based on a Remote Laboratory 1516-15 (b7k)-In Progress: Mulal Analysis of Engineering Structures Based on a Remote Laboratory 1528-15 (b7k)-Reflexibility Exploiting Tanenbaum's Approach to Teach Micrarchitecture Design 1528-15 (b7k) In Progress: Multiprotocol System for Learning Industrial Communications 1564-15 (b7k) In Progress: Design Education for Additive Maunfacturing using RC Race Car Models 1559-15 (b7k) In Progress: Design Education for Additive Maunfacturing using RC Race Car Models 1559-15 (b7k) In Progress: Design Education for Additive Maunfacturing using RC Race Car Models 1559-15 (b7k) In Progress: Towards a Conceptual Framework for Multi-Campus Course Development 1558-16 <td>Third Sector Institutions Associated To Education Areas In Brazil And Their Impact In Curricular References For Modernizing Industrial Engineering Courses: A</td> <td>1462–1470</td>	Third Sector Institutions Associated To Education Areas In Brazil And Their Impact In Curricular References For Modernizing Industrial Engineering Courses: A	1462–1470
ducating for Diversity Management in Engineering1437-14fork in Progress: Task-centric Holistic Teaching Approach to Teaching Programming with Java14437-14fork in Progress: Sleuth, a programming environment for testing gamification1503-15fork-in-Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1512-16lagnetoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education1516-15agaretoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education1516-16reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design1526-15earning By Creating Instructional Videos: An Experience Report from a Database Course1536-16errores or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing1542-16fork in Progress: Suthiprotocol System for Learning Industrial Communications1564-16fork in progress: Multiprotocol System for Learning Industrial Communications1564-16fork in Progress: Design Education for Additive Manufacturing using RC Race Car Models1573-16fork-in Progress: Towards a Conceptual Framework for Multi-Campus Course Development1568-16fork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1568-16fork-in-Progress: Tearning Approach In Floreshing Instruction and student assessment methodology1584-16fork-in-Progress: Tearning Approach In Informatics1569-16fork-in-Progress: Tearning Approach In Informatics1569-16fork-in-Progress: Tearning Approach In Informatics1569-16	Design and Construction of Physics Laboratory Equipment and an Authentic Evaluation System as a Pedagogical Tool in the Integral Training of Engineering	1471–1477
Jark in Progress: Task-centric Holistic Teaching Approach to Teaching Programming with Java1487-14Lic2Program - an Educational Android Application Teaching Computational Thinking1493-14Jork in Progress: Sleuth, a programming environment for testing gamification1503-15Jork-in-Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1508-15Jork-in-Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1512-15analysis of engineering Structures Based on a Remote Laboratory1516-15Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design1526-15arming By Creating Instructional Videos: An Experience Report from a Database Course1536-15circus Games or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing1542-16Jork in progress: Negling Education for Additive Manufacturing using RC Race Car Models1556-15Jork in progress: Design Education for Additive Manufacturing using RC Race Car Models1563-16Jork in Progress: Towards a Conceptual Framework for Multi-Campus Course Development1563-16Jork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1564-12Jork-in-Progress: Towards a Conceptual Framework for Studi-Stapp ADV Validation1579-15Jork-in-Progress: Towards a Conceptual Framework for Studi-Based Learning1642-16Jork-in-Progress: Learning Culture of Generation Z in Informatics1589-15Jork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1564-15Jork-in-Progress: Towards a Concept	A new revised definition of contract cheating.	1478–1482
ic2Program1493-15ic2Program1493-15fork In Progress: Steuth, a programming environment for testing gamilication1503-16icdx-in-Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1512-15nalysis of engineering structures Based on a Remote Laboratory1512-15lagnetoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education1516-15lagnetoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education1516-15earning Biv Greating Instructional Videos: An Experience Report from a Database Course1536-15earning Environment for Teaching Foreign Languages to Engineering Students1550-15fork in progress: Multiprotocol System for Learning Industrial Communications1554-15fork in progress: Design Education for Additive Manufacturing using RC Race Car Models1568-16lassification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits1568-16lork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1564-15fork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1564-16love-lange-bases interdiscipling and the sub-refering Students1564-16love-langes: Indexida and Models for Engineering Students1564-16love-lange Culture of Generation Z in Informatics1564-16love-langes: Towards a Conceptual Framework for Multi-Campus Course Development1564-16love-langed Learning Qulture of Generation Z in Informatics1564-16love-langes Learning Qulture of Ceneration Z in Informatics1564-16 <td>Educating for Diversity Management in Engineering</td> <td>1483–1486</td>	Educating for Diversity Management in Engineering	1483–1486
fork in Progress: Sleuth, a programming environment for testing gamification 1503–15 fork-in-Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory 1508–15 nalysis of engineering structures for active learning considering the study methods 1512–15 Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design 1526–15 Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design 1536–15 reious Games or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing 1542–15 fork in progress: Multiprotocol System for Learning Industrial Communications 1550–15 fork in progress: Design Education for Additive Manufacturing using RC Race Car Models 1558–16 penementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course 1558–16 fork-in-Progress: Learning Clutture of Generative analysis of Engineering Students 1564–16 fork-in-Progress: Learning Clutture of Generative analysis of Learning Approach in Biomedical Measurement and Instrumentation Course 1564–15 fork-in-Progress: Learning Clutture of Generative analysis of Learning Approach in Biomedical Measurement and Instrumentation Course 1564–15 fork-in-Progress: Learning Clutture of Generative analysis of Malui-Campus Course Development 1564–15 fork-in-Progress: Learn	Work in Progress: Task-centric Holistic Teaching Approach to Teaching Programming with Java	1487–1492
lock-in-Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory1508-15nalysis of engineering students' preparation for active learning considering the study methods1512-15langtos/Shield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education1516-15Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design1526-15searning By Creating Instructional Videos: An Experience Report from a Database Course1536-15cious Games or Challenge-based Learning Foreign Languages to Engineering Students1550-15Creating an E-learning Inviornment for Teaching Foreign Languages to Engineering Students1550-15Creating an E-learning Inviornment for Teaching Foreign Languages to Engineering Students1556-15Creating an C-learning Approach in Biomedical Measurement and Instrumentation Course1558-15Lassification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits1568-15Indivisit Progress: Towards a Conceptual Framework for Multi-Campus Course Development1564-15Lork-in-Progress: Learning Culture of Generation Z in Informatics1569-15Loving to Project-Based Learning aptroachis for Studio-Based Learning1564-15Loving to Project-Based Learning at the Program Level: an Experience Report1564-15Loving to Project-Based Learning Culture of Generation Z in Informatics1569-15Loving to Project-Based Learning Culture of Generation Z in Informatics1569-15Loving to Project-Based Learning in tabuty to fine-tune Instruction and student assessment methodology1564-16Loving to Project-Based Learning Culture	Pic2Program - an Educational Android Application Teaching Computational Thinking	1493–1502
nalysis of engineering students' preparation for active learning considering the study methods 1512-15 lagnetoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education 1516-15 Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design 1526-15 aming By Creating Instructional Videos: An Experience Report from a Database Course 1536-15 erious Games or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing 1542-15 Orkin in progress: Multiprotocol System for Learning Industrial Communications 1556-15 Jork in progress: Design Education for Additive Manufacturing using RC Race Car Models 1558-15 Jork in Progress: Design Education for Additive Manufacturing using RC Race Car Models 1563-15 Issification of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course 1573-15 Inplementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course 1573-15 Iffective Industry Ready IoT Applied Courseware – Teaching IoT Design AND Validation 1579-15 Iorkin-Progress: Learning Culture of Generation Z in Informatics 1584-16 Iorkin-Progress: Learning at the Program Level: an Experience Report 1614-16 Iorkin-Progress: Learning at the Program Level: an Experience Report 1614-16 Io	Work In Progress: Sleuth, a programming environment for testing gamification	1503–1507
lagnetoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education1516–15Reflection on Fully Exploiting Tamebaum's Approach to Teach Microarchitecture Design1526–15earning by Creating Instructional Videos: An Experience Report from a Database Course1536–15erious Games or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing1542–15Virk in progress: Design Education for Additive Manufacturing using RC Race Car Models1550–15Jork in progress: Design Education for Additive Manufacturing using RC Race Car Models1550–15Jork in progress: Design Education for Additive Manufacturing using RC Race Car Models1563–15Jork in Progress: Design Education for Additive Manufacturing using RC Race Car Models1563–15Jork in Progress: Design Education for Additive Manufacturing using RC Race Car Models1563–16Jork in Progress: Design Education of NSIR with Simple Alternated Current Circuits1568–16Jork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1564–16Jork-in-Progress: Learning Culture of Generation Z in Informatics1589–16Circk-in-Progress: Learning Culture of Generation Z in Informatics1564–16Circk-in-Progress: Learning at the Program Level: an Experience Report1644–16Hork-in Corect-Based Learning at the Program Level: an Experience Report1642–16Hork-in Study on Study No Students Acceptance of Chabots for Studio-Based Learning1622–16Hork-in Study on Students Acceptance of Chabots for Studio-Based Learning1627–16Hork-in Degine and Business interdisciplinary Know	Work-in-Progress: Modal Analysis of Engineering Structures Based on a Remote Laboratory	1508–1511
Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design1526-15earning By Creating Instructional Videos: An Experience Report from a Database Course1536-16erious Games or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing1542-16Teating an E-learning E-nvironment for Teaching Foreign Languages to Engineering Students1550-16fork in progress: Design Education for Additive Manufacturing using RC Race Car Models1556-16fork in progress: Design Educating Based Environment1568-16tashification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits1568-16aplementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course1579-16fork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1584-16fork-in-Progress: Learning Culture of Generation 2. In Informatics1589-16tork-in-Progress: Learning at the Program Level: an Experience Report1614-16loop-Expectation of Nedgis of Engineering Faculty Mastery Teaching Supporting Meaningful Learning1622-16long to Project-Based Learning at the Program Level: an Experience Report1614-16releining in anado-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1524-16long to Project-Based Learning at the Program Level: an Experience Report1614-16long to Project-Based Learning the Ordita in Studies Based Learning1622-16najsis of management systems for virtual and remotel labs1632-16neglement of a Serious Game to fight Childhood Obes	Analysis of engineering students' preparation for active learning considering the study methods	1512–1515
earning By Creating Instructional Videos: An Experience Report from a Database Course 1536–15 erious Games or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing 250–15 Oracing an E-learning Environment for Teaching Foreign Languages to Engineering Students 1550–15 (ork in progress: Multiprotocol System for Learning Industrial Communications 1554–15 (ork in progress: Design Education for Additive Manufacturing using RC Race Car Models 1559–15 (ark in progress: Design Education for Additive Manufacturing using RC Race Car Models 1559–15 (ark in Progress: Design Education for Additive Manufacturing using RC Race Car Models 1559–15 (ark in Progress: Design Education of NISIR with Simple Alternated Current Circuits 1568–16 (anglementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course 1578–15 (ark-in-Progress: Learning Approach in Biomedical Measurement and Instrumentation Course 1578–15 (ark-in-Progress: Learning Culture of Generation Z in Informatics 1589–16 (ark-in-Progress: Learning of Uner Generation Z in Informatics 1589–16 (ark-in-Progress: Learning of Uner of Generation Z in Informatics 1589–16 (ark-in-Progress: Learning at the Program Level: an Experience Report 1614–16 (Brective Tools and Models for Engineering Faculty Mastery/Teaching Supporting Meaningful Learning Prediminary Study on Students Acceptance of Chatbots for Studio-Based Learning 1622–16 (Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning 1622–16 (Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning 1627–16 (anglesering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline 1637–16 (arching plenentation of Integreting Methods with Aglie Games 1637–16 (Foreice Implementation of Integreting Methods with Aglie Games 1637–16 (applementation of Integreting Methods with Aglie Games 1637–16 (applementation of Integreting Methods wit	MagnetoShield: Prototype of a Low-Cost Magnetic Levitation Device for Control Education	1516–1525
erious Games or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing 1542–15 Treating an E-learning Environment for Teaching Foreign Languages to Engineering Students 1550–15 Jork in progresss: Design Education for Additive Manufacturing using RC Race Car Models 1559–15 aching Fluid Mechanics in a Virtual-Reality Based Environment 1568–15 lassification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits 1568–15 ffective Industry Ready IoT Applied Courseware – Teaching IoT Design AND Validation 1579–15 Jork-in-Progress: Learning Culture of Generation Z in Informatics Circuite Iarning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology 1594–16 Lovie Io Forget-Based Learning at the Program Level: an Experience Report 1644–166 loving to Project-Based Learning at the Program Level: an Experience Report 1644–166 Ingineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline reaching Study on Students Acceptance of Chabots for Studio-Based Learning 1622–166 reaching Software Engineering Methodo Wesity: "Barty" 1647–167 The Device Implementation of Internet of Thild Design XIND walking applied in Engineering Fundamentals discipline evelopment of a Serious Game to fight Childhood Obesity: "Barty" 1647–167 The Device Implementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level elucation 1679–162 esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level elucation - 10662–106 tock Protogramming - A Block Based Programming Learning Privatement Project as as olutions with Agile Games of Device Implementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project esign of small private online cou	A Reflection on Fully Exploiting Tanenbaum's Approach to Teach Microarchitecture Design	1526–1535
Creating an E-learning Environment for Teaching Foreign Languages to Engineering Students1550–15Vork in progress: Design Education for Additive Manufacturing using RC Race Car Models1559–15Lork in Progress: Design Education for Additive Manufacturing using RC Race Car Models1559–15Lassification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits1568–15applementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course1579–15(ork-in-Progress: Learning Culture of Generation Z in Informatics1589–16(ork-in-Progress: Learning Culture of Generation Z in Informatics1589–16cive learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1594–16loving to Project-Based Learning at the Program Level: an Experience Report1614–16loving to Project-Based Learning at the Program Level: an Experience Report1632–16nalaysis of management systems for vitual and remote labs1632–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamental discipline1637–16civelopment of a Serious Game to fight Childhood Obesity: "Barty"1641–16eaching Software Engineering Methods with Agile Games1657–16to Project Implementation of Design AND Validation Course Project1657–16lock integrate Or Childbos for Studio-Based Learning1637–16nalysis of management systems for vitual and remote labs1637–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamen	Learning By Creating Instructional Videos: An Experience Report from a Database Course	1536–1541
fork in progress: Multiprotocol System for Learning Industrial Communications1554–15fork in Progress: Design Education for Additive Manufacturing using RC Race Car Models1559–15eaching Fluid Mechanics in a Virtual-Reality Based Environment1568–15lassification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits1568–15pollementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course1573–15ffective Industry Ready IoT Applied Courseware – Teaching IoT Design AND Validation1579–15fork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1584–16/ork-in-Progress: Learning Culture of Generation Z in Informatics1584–16citive learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1594–16looying to Project-Based Learning at the Program Level: an Experience Report1614–16ffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1627–16nalysis of management systems for virtual and remote labs1632–16ngineering, Design at Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1637–16T Device Implementation of Integrate Euronis of Studio-Based Learning1647–16eaching Software Engineering Methods with Agile Games1647–16trie eaching of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16eaching Software Engineering Methods with Agile Games1667–16trie eign of small private online courses (SPCCs) for	Serious Games or Challenge-based Learning - A comparative analysis of learning models in the teaching of lean manufacturing	1542–1549
fork in Progress: Design Education for Additive Manufacturing using RC Race Car Models1559–16eaching Fluid Mechanics in a Vitual-Reality Based Environment1563–16lassification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits1568–16nplementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course1579–16/ork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1589–16/ork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1589–16/ork-in-Progress: Learning Culture of Generation Z in Informatics1589–16/ork-in-Progress: Learning Culture of Generation Z in Informatics1589–16/ork-in-Progress: Learning Culture of Generation Z in Informatics1589–16/ork-in-Progress: Learning Culture of Generation Z in Informatics1589–16/ork-in-Stopics and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1624–16/ork jos project-Based Learning at the Program Level: an Experience Report1614–16/fective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1627–16/ork-ing, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1634–16/ork-ing, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1641–16/ork-ing, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1637–16/ork-ing, Design and Business interdisciplinary	Creating an E-learning Environment for Teaching Foreign Languages to Engineering Students	1550–1553
eaching Fluid Mechanics in a Virtual-Reality Based Environment1563–15lassification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits1568–15nplementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course1573–15ffective Industry Ready IoT Applied Courseware – Teaching IoT Design AND Validation1579–15fork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1584–16/ork-in-Progress: Learning Culture of Generation Z in Informatics1589–15ctive learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1594–16he role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies1604–16loving to Project-Based Learning at the Program Level: an Experience Report1622–16ffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1632–16nalysis of management systems for virtual and remote labs1632–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1637–16or Device Implementation of Evaluation of Electronics and Software Design Skills1647–16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1647–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1662–16lock Pictogramming - A Block Based Program	Work in progress: Multiprotocol System for Learning Industrial Communications	1554–1558
lassification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits1568–16nplementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course1573–15ffective Industry Ready IoT Applied Courseware – Teaching IoT Design AND Validation1579–16/ork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1584–16/ork-in-Progress: Learning Culture of Generation Z in Informatics1584–16ctive learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1594–16he role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies1604–16loving to Project-Based Learning at the Program Level: an Experience Report1622–16ffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1622–16nalysis of management systems for virtual and remote labs1632–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1641–16To Device Implementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1661–16nolewment of a Strious Game to fight Childhood Obesity: "Barty"1641–16To Device Implementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16nolewmentation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16IT-Educati	Work in Progress: Design Education for Additive Manufacturing using RC Race Car Models Teaching Fluid Mechanics in a Virtual-Reality Based Environment	1559–1562 1563–1567
nplementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course1573–15ffective Industry Ready IoT Applied Courseware – Teaching IoT Design AND Validation1579–15/ork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1584–16/ork-in-Progress: Learning Culture of Generation Z in Informatics1589–16ctive learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1594–16he role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies1604–16loving to Project-Based Learning at the Program Level: an Experience Report1614–16ffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1622–16Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning1637–16nalysis of management systems for virtual and remote labs1637–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1641–16eaching Software Engineering Methods with Agile Games1647–16JT Device Implementation of Electronics and Software Design Skills1651–16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1667–16lock Pictogramming - A Block Based Programming Learning Environment through P	Classification of Experimental Errors Done in VISIR with Simple Alternated Current Circuits	1568–1572
Vork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1584–15Vork-in-Progress: Learning Culture of Generation Z in Informatics1589–15ctive learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1594–16he role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies1604–16loving to Project-Based Learning at the Program Level: an Experience Report1614–16ffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1622–16Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning1622–16nalysis of management systems for virtual and remote labs1637–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1641–16To Evice Implementation for Evaluation of Electronics and Software Design Skills1651–16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16of - 16-16-16iot Pictogramming - A Block Based SMEs' educational challenges and I4.0 readiness1674–16	Implementation of Integrated Learning Approach in Biomedical Measurement and Instrumentation Course	1573–1578
Vork-in-Progress: Towards a Conceptual Framework for Multi-Campus Course Development1584–15Vork-in-Progress: Learning Culture of Generation Z in Informatics1589–15ctive learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1594–16he role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies1604–16loving to Project-Based Learning at the Program Level: an Experience Report1614–16ffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1622–16Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning1622–16nalysis of management systems for virtual and remote labs1637–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1641–16To Evice Implementation for Evaluation of Electronics and Software Design Skills1651–16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16of - 16-16-16iot Pictogramming - A Block Based SMEs' educational challenges and I4.0 readiness1674–16		1579–1583
Vork-in-Progress: Learning Culture of Generation Z in Informatics1589–15ctive learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology1594–16he role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies1604–16loving to Project-Based Learning at the Program Level: an Experience Report1614–16ffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1622–16Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning1632–16nalysis of management systems for virtual and remote labs1632–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1641–16evelopment of a Serious Game to fight Childhood Obesity: "Barty"1641–16eaching Software Engineering Methods with Agile Games1647–16of Device Implementation for Evaluation of Electronics and Software Design Skills1651–16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16of T-Education technologies as solutions towards SMEs' educational challenges and 14.0 readiness1674–16		1584–1588
he role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies1604–160Ioving to Project-Based Learning at the Program Level: an Experience Report1614–160Iffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1622–160Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning1627–160nalysis of management systems for virtual and remote labs1632–160ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1637–160evelopment of a Serious Game to fight Childhood Obesity: "Barty"1641–160eaching Software Engineering Methods with Agile Games1651–160T Device Implementation for Evaluation of Electronics and Software Design Skills1651–160nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1662–160lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–160toT-Education technologies as solutions towards SMEs' educational challenges and 14.0 readiness1674–160	Work-in-Progress: Learning Culture of Generation Z in Informatics	1589–1593
he role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies1604–160Ioving to Project-Based Learning at the Program Level: an Experience Report1614–160Iffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1622–160Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning1627–160nalysis of management systems for virtual and remote labs1632–160ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1637–160evelopment of a Serious Game to fight Childhood Obesity: "Barty"1641–160eaching Software Engineering Methods with Agile Games1651–160T Device Implementation for Evaluation of Electronics and Software Design Skills1651–160nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1662–160lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–160toT-Education technologies as solutions towards SMEs' educational challenges and 14.0 readiness1674–160	Active learning in a hands-on Physics lab: a pilot study to fine-tune instruction and student assessment methodology	1594–1603
ffective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning1622-16Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning1627-16nalysis of management systems for virtual and remote labs1632-16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1637-16evelopment of a Serious Game to fight Childhood Obesity: "Barty"1641-16eaching Software Engineering Methods with Agile Games1647-16T Device Implementation of Electronics and Software Design Skills1651-16engine of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662-16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669-16of T-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness1674-16	The role of IoE-Education in the 5th wave theory readiness & its effect on SME 4.0 HR competencies	1604–1613
Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning1627-16nalysis of management systems for virtual and remote labs1632-16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1637-16evelopment of a Serious Game to fight Childhood Obesity: "Barty"1641-16eaching Software Engineering Methods with Agile Games1647-16of Device Implementation for Evaluation of Electronics and Software Design Skills1651-16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1662-16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669-16of T-Education technologies as solutions towards SMEs' educational challenges and 14.0 readiness1674-16	Moving to Project-Based Learning at the Program Level: an Experience Report	1614–1621
nalysis of management systems for virtual and remote labs1632–16ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline1637–16evelopment of a Serious Game to fight Childhood Obesity: "Barty"1641–16eaching Software Engineering Methods with Agile Games1647–16of Device Implementation of Electronics and Software Design Skills1651–16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16of T-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness1674–16	Effective Tools and Models for Engineering Faculty MasteryTeaching Supporting Meaningful Learning	1622–1626
ngineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline 1637–16 evelopment of a Serious Game to fight Childhood Obesity: "Barty" 1641–16 eaching Software Engineering Methods with Agile Games 1647–16 of Device Implementation for Evaluation of Electronics and Software Design Skills 1651–16 nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project 1657–16 esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education - 1662–16 lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation - 1669–16 T-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness 1674–16	A Preliminary Study on Students Acceptance of Chatbots for Studio-Based Learning	1627–1631
evelopment of a Serious Game to fight Childhood Obesity: "Barty"1641–16eaching Software Engineering Methods with Agile Games1647–16T Device Implementation for Evaluation of Electronics and Software Design Skills1651–16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16T-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness1674–16	Analysis of management systems for virtual and remote labs	1632–1636
eaching Software Engineering Methods with Agile Games1647–16T Device Implementation for Evaluation of Electronics and Software Design Skills1651–16Inplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16IT-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness1674–16	Engineering, Design and Business interdisciplinary knowledge and technical scientific skills applied in Engineering Fundamentals discipline	1637–1640
T Device Implementation for Evaluation of Electronics and Software Design Skills1651–16nplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16IT-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness1674–16	Development of a Serious Game to fight Childhood Obesity: "Barty"	1641–1646
Inplementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project1657–16esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16IT-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness1674–16	Teaching Software Engineering Methods with Agile Games	1647–1650
esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16IT-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness1674–16	IoT Device Implementation for Evaluation of Electronics and Software Design Skills	1651–1656
esign of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education1662–16lock Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -1669–16IT-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness1674–16	Implementation of Internet of Things in Biomedical Measurement and Instrumentation Course Project	1657–1661
T-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness 1674–16	Design of small private online courses (SPOCs) for Innovation and entrepreneurship (I&E) Doctoral-level education	1662–1668
T-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness 1674–16	Block Pictogramming - A Block Based Programming Learning Environment through Pictogram Content Creation -	1669–1673
	IoT-Education technologies as solutions towards SMEs' educational challenges and I4.0 readiness	1674–1683
	Learning from Escape Rooms? A Study Design Concept Measuring the Effect of a Cryptography Educational Escape Room	1684–1685
/ork-in-Progress: Control Engineering Education - Practical Training Concepts N/A	Work-in-Progress: Control Engineering Education - Practical Training Concepts	
	MOOC Drones for Agriculture: The making-of	1692-1695
	Two Complementary Active Learning Strategies in Soil Mechanics Courses: Students' Perspectives	1696-1702
	Apollon Project: A Massive Online Open Lab For Citizen Science Driven Environmental Monitoring	1703–1712
	Work in Progress: Towards an Academic Secure Sofware Engineering Curriculum for Engineers	1713–1717
	Work-in-Progress: Tailoring broad-spectrum, technology-centred IEM studies	1718–1722

Title Iable of Contents	Page range
Work in Progress: Fostering Soft-Skills of Engineering Students Within Scrum Projects	1723–1727
Writing Sci-Fi stories: a pedagogic challenge	1728–1734
Rehab Didactic Toys	1735–1739
Assessing Mozambique's Software Industry to Foster Local Universities-Industry Collaboration	1740–1747
Work-in-Progress: Matrix Analyser and Circuit Design Automator: a Software Tool	1748–1751
STEAM-based Active Learning Approach to Selected Topics in Electrical/Computer Engineering	1752-1757
Stimulating Research Projects Through Teaching a Course on the Internet of Things	1758–1763
International classroom at Eindhoven University of Technology	N/A
Work-in-Progress: Using Lego® Serious Play™ processes to build responsible professionals	1770–1774
Vocational Education and Training Apprenticeship: Using Teaching and Learning Analytics in a Learning Management System for improved Collaboration,	1775–1782
E-learning tools: Engaging Our Students?	1783–1786
Here you have to be mixing: collaborative learning on an engineering program in Ireland as experienced by a group of Middle Eastern young women	1787–1794
An Overview of Organizational Approaches for Teacher Professional Development in Europe	1795–1799
Internet of Things education for the business sector: three years of experience	1800–1806
Expanding the level of engineer knowledge for software modeling within corporate education by active and collaborative learning	1807–1814
Agile method and implementation of gamification in a course for engineering students	1815–1818
Work-in-Progress: A Systematic Mapping Study of Experiences with Active Learning Strategies and Methods in Brazilian Engineering Education	1819–1823
Gender equality in STEM programs: a proposal to analyse the situation of a university about the gender gap	1824–1830
A bibliometric analysis of 10 years of EDUCON (2010-2019)	1831–1835
Multidisciplinary and Multicultural Knowledge Transfer and Sharing in Higher EducationTeamworking	1836–1843
Work in Progress: A MOOC-based Innovative Instructional Approach for Curriculum Design	1844–1847
IoT-education policies on national and international level regarding best practices in German SMEs	1848–1857
Advance Learning Assistant System (ALAS) for Engineering Education	1858–1861
CodaRoutine: A Serious Game for Introducing Sequential Programming Concepts to Children with Autism	1862–1867
Programming LEGO EV3 in Microsoft MakeCode	1868–1872
Development of accessibility resources for teaching and learning of Science, Technology, Engineering and Mathematics	1873–1878
Gender Differences in Students' Assessment in a Fluid Mechanics Course Strategies to introduce gender perspective in Engineering studies: a proposal based on self-diagnosis	1879–1883 1884–1890
Work in Progress: Adapting Engineering Examinations from Paper to Online	1891–1895
Work in Progress: Entrepreneurship as a Path to Develop Women Career in Engineering	1896–1899
Work in Progress: Curriculum review for rocket scientists	1900–1904
Computational Thinking Test for Beginners: Design and Content Validation	1905–1914
Can e-book technology be enough to support e-learning?	1915–1921
Making Educational Technology Invisible	1922-1927
Recent activities by IEEE Education Society Portugal Chapter	1928–1931
Activities of the Spanish Chapter of the IEEE Education Society	1932–1936
EntreCom4LL MODEL to sustain the entrepreneurship competence needs	1937–1940
Different ways to prepare students and faculty for globalization	1941–1944
Project Based Learning in Engineering Education in Close Collaboration with Industry	1945–1953
IEEE Education Society: Chapters and Members	1954–1958
We Won't Waste You: A research project to introduce waste and social sustainability in design thinking	1959–1963
Assessment practices in higher education: a case study	1964–1968
Engaging students, teachers, and professionals with 21st century skills: the 'Critical Thinking Day' proposal as an integrated model for engineering educational	1969–1974
Gamification in Engineering Education - a Preliminary Literature Review	1975–1979