2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2020)

Vasteras, Sweden 11 – 13 March 2020

IEEE Catalog Number: ISBN:

CFP20169-POD 978-1-7281-6583-7

Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP
ISBN (Print-On-Demand):	978-
ISBN (Online):	978-
ISSN:	1066
	210

CFP20169-POD 978-1-7281-6583-7 978-1-7281-6582-0 1066-6192

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) **PDP 2020**

Table of Contents

Preface from General Co-Chairs	xiii
Preface from Program Co-Chairs	xiv
Conference Organization	

Main Track Sessions:

GPU Kernels

Accelerators

Parallel Comparison of Huge DNA Sequences in Multiple GPUs with Block Pruning .	
Marco Figueiredo Jr. (Univerity of Braŝilia), Edans Sandes (Univerity	
of Brasilia), George Teodoro (Universidade Federal de Minas Gerais),	
and Alba C. M. Ä. Melo (University of Brasilia)	

Implementation and Optimization of a 1D2V PIC Method for Nonlinear Kinetic Models on GPUs ... 30 Matthias Korch (University of Bayreuth), Philipp Raithel (University of Bayreuth), and Tim Werner (University of Bayreuth) The Non-Uniform Compute Device (NUCD) Architecture for Lightweight Accelerator Offload38 Mochamad Asri (The University of Texas at Austin), Curtis Dunham (Arm Research), Roxana Rusitoru (Arm Research), Andreas Gerstlauer (The University of Texas at Austin), and Jonathan Beard (Arm Research)

Distributed Systems

Inter-Server RSS: Extending Receive Side Scaling for Inter-Server Workload Distribution
DSPG: Decentralized Simultaneous Perturbations Gradient Descent Scheme
Performance Meets Programmabilty: Enabling Native Python MPI Tasks In PyCOMPSs
Accurate Contention Estimate Scheduling Method Using Multiple Clusters of Many-Core Platform 67

Shingo Igarashi (Saitama University), Yuto Kitagawa (Osaka University), Takuro Fukunaga (Chuo University), and Takuya Azumi (Saitama University)

Cloud Computing

M3AT: Monitoring Agents Assignment Model for Data-Intensive Applications
An Interference-Aware Application Classifier Based on Machine Learning to Improve Scheduling in
Clouds
Vinícius Meyer (Pontifical Catholic University of Rio Grande do Sul),
Dionatrã F. Kirchoff (Pontifical Catholic University of Rio Grande do
Sul), Matheus L. da Silva (Pontifical Catholic University of Rio
Grande do Sul), and César A. F. De Rose (Pontifical Catholic
University of Rio Grande do Sul)
Modeling and Simulation of QoS-Aware Power Budgeting in Cloud Data Centers
University, University of Massachusetts Amherst), Per-Olov Östberg
(Umea University), César A. F. De Rose (Pontifical Catholic University
of Rio Grande do Sul), and Erik Elmroth (Umea University)

Machine Learning, Deep Learning

Adaptive Load Balancing Based on Machine Learning for Iterative Parallel Applications
Accelerating Deep Learning Using Multiple GPUs and FPGA-Based 10GbE Switch
On the Resilience of Deep Learning for Reduced-Voltage FPGAs

Protocols (Classification and Communication)

Enhancing Two Phase-Commit Protocol for Replicated State Machines Halit Uyanık (Istanbul Technical University) and Tolga Ovatman (Istanbul Technical University)	118
TLB-Based Block-Grain Classification of Private Data Bhargavi R. Upadhyay (Bengaluru Amrita Vishwa Vidyapeetham), Alberto Ros (Universidad de Murcia), and Murty N S (Bengaluru Amrita Vishwa Vidyapeetham)	122
RSMCC: Enabling Ring-based Software Managed Cache-Coherent Embedded SoCs Georgios Kornaros (Hellenic Mediterranean University)	131

Performance vs Energy Efficiency

Robustness and Energy-Elasticity of Crown Schedules for Sets of Parallelizable Tasks on Many-Core Systems with DVFS
Decreasing the Learning Cost of Offline Parallel Application Optimization Strategies
Maximizing Profit in Energy-Efficient Moldable Task Execution with Deadline

Voltage Island-Aware Energy-Efficient Scheduling of Parallel Streaming Tasks on Many-Core CPUs	157
Nicolas Melot (Linköping University), Christoph Kessler (Linköping University), and Jörg Keller (FernUniversität in Hagen)	
Evaluating the Energy Efficiency of OpenCL-Accelerated AutoDock Molecular Docking Leonardo Solis-Vasquez (Technische Universität Darmstadt), Diogo Santos-Martins (The Scripps Research Institute), Andreas Koch (Technische Universität Darmstadt), and Stefano Forli (The Scripps Research Institute)	162
Performance Study of HPC Applications on an Arm-Based Cluster Using a Generic Efficiency Model	167
Fabio Banchelli (Barcelona Supercomputing Center), Kilian Peiro (Barcelona Supercomputing Center), Andrea Querol (Barcelona Supercomputing Center), Guillem Ramirez-Gargallo (Barcelona Supercomputing Center), Guillem Ramirez-Miranda (Barcelona Supercomputing Center), Joan Vinyals (Barcelona Supercomputing Center), Pablo Vizcaino (Barcelona Supercomputing Center), Marta Garcia-Gasulla (Barcelona Supercomputing Center), and Filippo Mantovani (Barcelona Supercomputing Center)	

Embedded Systems

Multi-Level Binarized LSTM in EEG Classification for Wearable Devices Najmeh Nazari (University of Tehran), Seyed Ahmad Mirsalari (University of Tehran), Sima Sinaei (Malardalen University), Mostafa E. Salehi (University of Tehran), and Masoud Daneshtalab (Malardalen University)	175
Mapping Method of MATLAB/Simulink Model for Embedded Many-Core Platform	182
Kentaro Honda (Saitama University), Sasuga Kojima (Osaka University),	
Hiroshi Fujimoto (Technology Headquarters eSOL Co., Ltd), Masato	
Edahiro (Nagoya University), and Takuya Azumi (Saitama University)	

Parallelism

 A Hybrid Approach to Parallel Pattern Discovery in C++	.87
Automatic Placement of Tasks to NUMA Nodes in Iterative Applications	.92
Recursive Task Generation for Scalable SDF Graph Execution on Multicore Processors	.96

 Evaluating the Performance and Improving the Usability of Parallel and Distributed Word Embeddings Tools
Modeling and Simulating Daily Power Budgets for Sustainable Data Centers
F2MH Cryptosystem: Preliminary Analysis of an Original Attempt to Revive Knapsack-Based Public-Key Encryption Schemes 211 Yuri da Silva Villas Boas (Federal University of Santa Catarina), 211 Daniel Santana Rocha (Institute for Pure and Applied Mathematics), 216 Charles F. de Barros (Federal University of São João del-Rey), and 300 Jean Everson Martina (Federal University of Santa Catarina) 300

Special Sessions:

GPU Computing and Many Integrated Core Computing

Lessons Learned from Comparing C-CUDA and Python-Numba for GPU-Computing 216 Lena Oden (FernUniversität in Hagen)
CoopCL: Cooperative Execution of OpenCL Programs on Heterogeneous CPU-GPU Platforms 224 Konrad Moreń (Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB) and Diana Göhringer (TU Dresden)
A GPU Enhanced LIDAR Perception System for Autonomous Vehicles
Performance and Efficiency Investigations of SIMD Programs of Coulomb Solvers on Multi-and Many Core Systems with Vector Units
Parallelization of Variable Rate Decompression Through Metadata
Heuristic Algorithms with Near Optimal Broadcasting in Cactus Graphs

Advances in High-Performance Bioinformatics and Biomedicine

Accelerating Human Genome Phenotypic Analysis with Bitwise Search and Batched Computation 258
Yuichiro Miyamoto (Osaka University), Masao Okita (Osaka University), and Fumihiko Ino (Osaka University)
Implementation of Syncytial Models in NEURON Simulator for Improved Efficiency
On-chip Parallel and Network-Based Systems
Efficient On-Chip Multicast Routing Based on Dynamic Partition Merging
Off-Chip Congestion Management for GPU-Based Non-Uniform Processing-in-Memory Networks 282
Kishore Punniyamurthy (The University of Texas at Austin) and Andreas Gerstlauer (The University of Texas at Austin)
Selective Caching: Avoiding Performance Valleys in Massively Parallel Architectures
NoC Design Methodologies for Heterogeneous Architecture
Partition Pruning: Parallelization-Aware Pruning for Dense Neural Networks
Temperature-Aware Core Mapping for Heterogeneous 3D NoC Design Through Constraint Programming 312 Ayhan Demiriz (Gebze Technical University), Hamzeh Ahangari (Bilkent 312 University), and Ozcan Ozturk (Bilkent University) 312
Switching at Flit Level: A Congestion Efficient Flow Control Strategy for Network-on-Chip

High Performance Computing in Modelling and Simulation

Optimizing Cellular Automata Execution by Distributed Discrete Event Simulation Techniques 323 Andrea Giordano (ICAR-CNR), Donato D'Ambrosio (University of Calabria), Rocco Rongo (University of Calabria), William Spataro (University of Calabria), and Alessio De Rango (University of Calabria)

Elastic and Real-Time Capacity Planning for Web Search Engines
Efficient Wavefront Parallel Processing for HEVC CABAC Decoding
A p2p Environment to Validate Ensemble-Based Approaches in the Cybersecurity Domain
Recent Trends in Modelling and Simulation with Machine Learning
Natural Language Processing Approach for Distributed Health Data Management
 Health Data Information Retrieval For Improved Simulation
An Efficient and Scalable SPARK Preprocessing Methodology for Genome Wide Association Studies
Practical Parallelization of Scientific Applications
Acceleration of Radiofrequency Ablation Process for Liver Cancer Using GPU
 Scalable Parallel Genetic Algorithm For Solving Large Integer Linear Programming Models Derived From Behavioral Synthesis
Automation of High-Fidelity CFD Analysis for Aircraft Design and Optimization Aided by HPC 395 Mengmeng Zhang (Airinnova AB), Jing Gong (KTH Royal Institute of Technology), Lilit Axner (KTH Royal Institute of Technology), and Michaela Barth (KTH Royal Institute of Technology)

Cloud Computing on Infrastructure as a Service and its Applications

Windsurfing with APPA: Automating Computational Fluid Dynamics Simulations of Wind Flow Using Cloud Computing
Container Anomaly Detection Using Neural Networks Analyzing System Calls
Security in Parallel, Distributed and Network-Based Computing
 SEPAD - Security Evaluation Platform for Autonomous Driving
Augmented Reality for Visualizing Security Data for Cybernetic and Cyberphysical Systems 421 Maxim Kolomeets (St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences), Andrey Chechulin (St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences), Ksenia Zhernova (St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences), Igor Kotenko (St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences), and Diana Gaifulina (St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences)
Optimizing Secure Information Interaction in Distributed Computing Systems by the Sequential Concessions Method 429 Igor Kotenko (St. Petersburg Institute for Informatics and Automation 429 of the Russian Academy of Sciences), Yury Sineshchuk (Saint-Petersburg 429 University of the Ministry of Internal Affairs of the Russian 429 Federation), and Igor Saenko (St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences) 429
A Trusted Agent Strategy in Decentralized Network Environments
Decidability of Deterministic Process Equivalence for Finitary Deduction Systems

uthor Index
