2019 IEEE PELS Workshop on Emerging Technologies: **Wireless Power Transfer** (WoW 2019)

London, United Kingdom 18 – 21 June 2019

IEEE Catalog Number: CFP1962X-POD ISBN:

978-1-7281-0881-0

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP1962X-POD

 ISBN (Print-On-Demand):
 978-1-7281-0881-0

 ISBN (Online):
 978-1-5386-7514-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

Tuesday 18 June

_				$\overline{}$	
к	egist	ration	and	()n	ening

	08:00	Registration	&	Coffee
--	-------	--------------	---	--------

08:25 Welcome Talk

Paul Mitcheson, Hubregt Visser

Plenary Talk I

Kelvin Lecture Theatre

Chairs: Bart Smolders, Grant Covic

08:55 Wireless Charging: Driving EV Adoption and the Autonomous Future.....N/A

Alex Gruzen

WiTricity, United States of America

09:40 Transit

WPTC Session I – Systems for Power and Data Transfer.....N/A Kelvin Lecture Theatre

Chairs: Bruno Clerckx, Luca Roselli

- 09:45 Experimental Analysis of Harvested Energy and Throughput Trade-Off in a Realistic SWIPT System....N/A

 Junghoon Kim¹, Bruno Clerckx¹, Paul D. Mitcheson¹

 Imperial College London, United Kingdom
- 10:00 Experimental Characterization of Narrowband Power Optimized Waveforms.....N/A Takashi Ikeuchi¹, Yoshihiro Kawahara¹, Joshua R. Smith²

 ¹University of Tokyo, Japan, ²University of Washington, United States of America
- 10:15 Power Allocation Method Using Pilot Signal for Simultaneous Transmission of Power and Information.....N/A
 Nam-I Kim¹, Dae geun Yang¹, Ju Yong Lee¹, Dong-Ho Cho¹
 ¹KAIST. South Korea
- 10:30 A New Wireless Power and Data Transmission Circuit for Cochlear Implants.....N/A Iman Abdali Mashhadi¹, Behzad Poorali¹, Majid Pahlevani¹

 'University of Calgary, Canada
- 10:45 Receiving ASK-OFDM in Low Power SWIPT Nodes without Local Oscillators.....N/A Steven Claessens¹, Ya Ting Chang¹, Dominique Schreurs¹, Sofie Pollin¹

 ¹University of Leuven, Belgium
- I I:00 A Wideband Efficient Rectifier Design for SWIPT.....N/A

 Ya Ting Chang¹, Steven Claessens¹, Sofie Pollin¹, Dominique Schreurs¹

 University of Leuven, Belgium

Chairs: Jüi	rgen Meins, Christopher Kwan
09:45	Optimising Ferrite-Less Pad Reflection Winding with a Multi-Objective Genetic Algorithm I Matthew G.S. Pearce ¹ , Michael J. O'Sullivan ¹ , Claudio Carretero ² , Grant A. Covic ¹ , John T, Boys ¹ ¹ University of Auckland, New Zealand, ² University of Zaragoza, Spain
10:00	Evaluation of Soft Magnetic Composites for Inductive Wireless Power Transfer7 Daniel Barth ¹ , Giuseppe Cortese ² , Thomas Leibfried ¹ ¹ Karlsruhe Institute of Technology, Germany, ² Daimler AG, Germany
10:15	Avoiding Null Power Point in DD coilsI I Manuele Bertoluzzo ¹ , Giuseppe Buja ¹ , Hemant Dashora ¹ ¹ University of Padova, Italy
10:30	A Dead-Angle-Free Omnidirectional Wireless Power TransferN/A Bowen Zhang ¹ , Zhen Zhang ¹ , Hongliang Pang ¹ , Cong Xie ¹ , Xingyu Li ¹ , Lin Yang ¹ ¹ Tianjin University, China
10:45	Misalignment Influence on Resonance Shielding in Wireless Power Transfer for Electric Vehicles16 Myrel Alsayegh ¹ , Markus Clemens ¹ , Benedikt Schmuelling ¹ University of Wuppertal, Germany
11:00	Reduction of the Shielding Effect on the Coupling Factor of an EV WPT System21 Karim Kadem ¹ , Yann Le Bihan ¹ , Mohamed Bensetti ¹ , Éric Laboure ¹ , Antoine Diet ¹ , Mustapha Debbou ² Sorbonne Université, France, ² Vedecom, France
Coffee Bi	reak
11:15	Coffee Break
	Talk 2 ecture Theatre essandra Costanzo, David Yates
11:40	Market & Future of Global Wireless Power Transfer IndustryN/A Alexander Gerfer Würth Elektronik, Germany
Lunch	
12:25	Lunch
	ted Talk I ecture Theatre on Hui, Nuno Carvalho
13:45	Moving to a World without WiresN/A Paul Wiener GaN Systems, United States of America

14:10 Transit

WPTC	Session	2 _	Novel	Rectifier	Solutions
V V I I C	- 26331011		INOVEI	Recuirei	JOIULIOIIS

K alvin	Lecture ⁻	lhootro
IZEIVIII	Lecture	i ileati e

Chairs: Nuno Carvalho, Pedram Mousawi

14:15 Input Impedance Calculation of a Multi-Stage Rectifier Circuit.....N/A Hubregt Visser¹, Hans Pflug², Shady Keyrouz³ 'imec, Netherlands, ²GTX Medical, Netherlands, ³Antenna Company, Netherlands

14:30 Gan Schottky Barrier Diode for Sub-Terahertz Rectenna.....N/A Sei Mizojiri¹, Kengo Takagi¹, Kohei Shimamura¹, Shigeru Yokota¹, Masafunari Fukunari², Yoshinori Tatematsu², Teruo Saito² ¹University of Tsukuba, Japan, ²University of Fukui, Japan

- 14:45 Design of High Voltage Output for CMOS Voltage Rectifier for Energy Harvesting Design.....N/A Jefferson A. Hora¹, Eryk Dutkiewicz¹, Xi Zhu¹

 ¹University of Technology Sydney, Australia
- 15:00 Wide Dynamic Range Rectifier Circuit with Varactor Tuning Technique.....N/A
 Ayako Suzuki¹, Koshi Hamano¹, Hayato Shimizu¹, Hiroshi Okazaki², Yasunori Suzuki², Kunihiro Kawai²,
 Atushi Fukuda², Kenjiro Nishikawa¹

 ¹Kagoshima University, Japan, ²NTT Docomo, Inc., Japan
- 15:15

 2.4 GHz CMOS Design RF-to-DC Energy harvesting with Charge Control System for WSN Application.....N/A

 Jefferson A. Hora¹, Eryk Dutkiewicz¹, Xi Zhu¹

 ¹University of Technology Sydney, Australia

WoW Session 2 – System Characterisation

Turing Lecture Theatre Chairs: Ron Hui, Patrick Hu

- 14:15 Optimal Excitation of Multi-transmitter Wireless Power Transfer System without Receiver Sensors.....25
 Prasad Jayathurathnage¹, Fu Liu¹

 ¹Aalto University, Finland
- 14:30 <u>Loss Shifted Design of Transcutaneous Energy Transfer Systems.....29</u>
 Alexander Enssle¹, Lukas Elbracht¹, Nejila Parspour¹, Marco Zimmer¹, Joerg Heinrich¹ University of Stuttgart, Germany
- 14:45 Measuring the Q-factor of IPT Magnetic Couplers.....34
 Gaurav R. Kalra¹, Matthew G. S. Pearce¹, Seho Kim¹, Duleepa J. Thrimawithana¹, Grant A. Covic¹
 University of Auckland, New Zealand
- Impedance Measurement on Inductive Power Transfer Systems.....39
 Marius Hassler¹, Oguz Atasoy², Morris Kesler², Karl Twelker², Tobias Achatz³, Markus Jetz³, Josef Krammer¹
 IBMW Group, Germany, ²WiTricity Corporation, United States of America, ³Zollner Elektronik AG, Germany
- 15:15 A Reflected Impedance Estimation Technique for Inductive Power Transfer.....45
 Lingxin Lan¹, Juan M. Arteaga¹, David C. Yates¹, Paul D. Mitcheson¹
 Imperial College London, United Kingdom

D 4	C :		C - K	D 1.
Poster	Session	i and	Сопее	Break

15:30 – 17:00 Poster Session I – WPTC

Chair: Diego Masotti

WPTC-PI - Near-Field Links

Maxwell Library

WPPI Design of Coil Turn Ratios to Achieve Extensive Load Range and High Efficiency in Wireless

Power Transfer System....N/A

Heng-Ming Hsu¹, Yu-Fu Liu¹, Jian-Kai Liao¹, Pang Yu Liu¹

¹National Chung Hsing University, Taiwan

WPP2 Using Metallic Coil to Optimize the Heating Efficiency for Tumor Hyperthermia.....N/A

Guoxiong Chen¹, Chenxi Wang¹, Yuhua Cheng¹, Gaofeng Wang¹

¹Hangzhou Dianzi University, China

WPP3 <u>Virtual Impedance Control for Efficient Power Transfer in Electromagnetic Levitation</u>

Melting System....N/A

Moria Elkayam¹, Yotam Frechter¹, Idan Sassonker¹, Alon Kuperman¹

Ben-Gurion University of the Negev, Israel

WPP4 High Q-factor Coil with Transistorized Negative Impedance Converter for Mobile

Applications....N/A

Tae-Hyung Kim¹, Gi-Ho Yun², Jong-Gwan Yook¹

¹Yonsei University, South Korea, ²Sungkyul University, South Korea

WPP5 Global Optimization Design of Inductively Coupled Power Transfer System Parameter.....N/A

Qiang Bo^{1,2}, Lifang Wang^{1,3}, Tao Chengxuan¹

¹Institute of Electrical Engineering Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China, ³Beijing Co-Innovation Center for Electric Vehicles,

China

WPP6 Modeling of Magnetic Coupled Coil for Wireless Power Transfer in Conductive Medium.....N/A

Jongwook Kim¹, Haerim Kim¹, Dongwook Kim¹, Yujun Shin¹, Chanjun Park¹, Seungyoung Ahn¹

¹KAIST, South Korea

WPP7 A Design Procedure for CPT System with LCL Resonant Network.....N/A

Hongfei Xia¹, Huanhuan Wu¹, Yuhua Cheng¹, Gaofeng Wang¹

Hangzhou Dianzi University, China

WPP8 85-kHz band 450-W Inductive Power Transfer for Unmanned Aerial Vehicle Wireless

Charging Port....N/A

Shuichi Obayashi¹, Yasuhiro Kanekiyo¹, Kouju Nishizawa², Hiroaki Kusada²

¹Toshiba Corporation, Japan, ²Tepco Research Institute, Japan

WPP9 Design of Free-Positioning Wireless Power Transfer using A Half-Rectangular

Prism Transmitting Coil....N/A

Nam Ha-Van¹, Hoang Le-Huu¹, Chulhun Seo¹

Soongsil University, South Korea

WPP10 Wireless Power Transfer System Using Sub-Wavelength Toroidal Magnetic Metamaterials.....N/A

Yuqian Wang¹, Xu Chen¹, Yewen Zhang¹, Kai Fang¹, Yong Sun¹, Yunhui Li¹, Hong Chen¹

¹TongJi University, China

WPPII	Design of Magnetic Shielding Structure for Wireless Charging CouplerN/A Heqi Xu ¹ , Houji Li ¹ , Chunfang Wang ¹ ¹ Qingdao University, China
WPP12	Study on Series Printed-Circuit-Board Coil Matrix for Misalignment-Insensitive Wireless ChargingN/A Jianchao Li ¹ , Liming Wang ¹ , Fanghui Yin ¹ Tsinghua University, China
WPP13	An Efficiency Optimization Strategy in a Wireless Power Transfer Device Under SeawaterN/A Wei Gao ¹ , Jingjing Jiang ² , Jianxin Gao ¹ , Da Li ¹ Naval University of Engineering, China, ² Central Hospital in Wuhan, China
WPP14	Optimal Coil Design for Wireless powering of Biomedical Implants Considering Safety ConstraintsN/A Erik Andersen ¹ , Binh Duc Truong ¹ , Shad Roundy ¹ University of Utah, United States of America
WPP15	Wireless Power Transfer System whose Input / Output Ratio is Determined Only by Self-InductanceN/A Kenji Nara¹, Naofumi Madoiwa², Yasuyoshi Kaneko¹ ¹Saitama University, Japan, ²Tokyo Institute of Technology, Japan
WPP16	Alternative Configuration of Open-Bifilar Coil for Self-Resonant Wireless Power Transfer SystemN/A Caio M. de Miranda ¹ , Ségio F. Pichorim ¹ Federal University of Technology,
WPP17	Brazil AC Loss Behavior of Wireless Power Transfer CoilsN/A Christoph Utschick ¹ , Christian Merz ¹ , Cem Som ¹ Würth Elektronik eiSos GmbH & Co. KG, Germany
WPP18	Investigation of Magnetic Field Shielding by Mesh Aluminum Sheet in Wireless Power Transfer SystemN/A Cancan Rong ¹ , Xiong Tao ¹ , Conghui Lu ¹ , Minghai Liu ¹ 'Huazhong University of Science and Technology, China
WPP19	Efficiency Factor Calculation for Contactless Energy Transfer SystemsN/A Jörg Heinrich ¹ , Philipp Präg ¹ , Nejila Parspour ¹ , David Maier ¹ ¹ University of Stuttgart, Germany
WPP20	Current Distribution Analysis for Automatic Resonator Design in Wireless Power TransferN/A Yoshiaki Narusue ¹ , Misaki Fujishiro ¹ , Yoshihiro Kawahara ¹ , Hiroyuki Morikawa ¹ ¹ University of Tokyo, Japan
WPP21	Research on Dynamic Wireless Charging of Electric Vehicle Based on Double LCC Compensation ModeN/A Xian Zhang¹, Jie Wang¹, Ming Xue¹, Yang Li¹, Qingxin Yang¹ ¡Tianjin Polytechnic University, China
WPP22	Research on Shield Structure of Inductively Coupled Power Transfer SystemN/A Houji Li ¹ , Heqi Xu ¹ , Chunfang Wang ¹ Qingdao University, China

WPP23	Maximum Efficiency Point Tracking in Inductive Links: Series versus Parallel Receiver's CompensationN/A Pablo Pérez-Nicoli ¹ , Fernando Silveira ¹
	Universidad de la República, Uruguay
WPP24	Omni-directional Inductive Wireless Power Transfer with 3D MID inductorsN/A Kamotesov Sergkei ¹ , Philippe Lombard ² , Vincent Semet ² , Bruno Allard ² , Maël Moguedet ¹ , Michel Cabrera ²
	Smart Plastic Products (S2P), France, 2Université de Lyon, France
WPP25	Maximising Inductive Power Transmission using a Novel Analytical Coil Design ApproachN/A Maryam Heidarian ¹ , Samuel J. Burgess ¹ , Radhakrishna Prabhu ¹ , Nazila Fough ¹ Robert Gordon University, United Kingdom
WPP26	Novel Calculation Model for Bunched Litz WiresN/A Christian Roth!, Dieter Gerling!
	Universitaet der Bundeswehr Muenchen, Germany
WPP27	Efficiency Improvement for Three-coil Cooperative Inductive Power Transfer SystemsN/A Quoc-Trinh Vo ¹ , Quang-Thang Duong ¹ , Minoru Okada ¹ ¹ Nara Institute of Science and Technology, Japan
WPP28	Multiple-Receiver Wireless Power Transfer System Using a Cubic TransmitterN/A Hoang Le-Huu ¹ , Nam Ha-Van ¹ , Chulhun Seo ¹
	Soongsil University, South Korea
WPP29	Capacitively Coupled Resonators for Misalignment-Tolerant Wireless Charging through Metallic CasesN/A Fabiano Cezar Domingos ¹ , Susanna Vital de Campos de Freitas ¹ , Rashid Mirzavand I, Pedram Mousavi ¹
	University of Alberta, Canada
WPP30	Omnidirectional Power Transfer Through the Inductive and Capacitive Coupling Region ofN/A <u>a Transmitter</u> N/A Yen Po Wang ¹ , Reo Kometani ¹ , Shin'ichi Warisawa ¹ University of Tokyo, Japan
WPP31	Parallel Resonant Inductive Wireless Power TransferN/A Hans W. Pflug ^{1,2} , Steven Beumer ² , Koen Weijand, Tina Bartulović Ćulibrk ¹ , Jeroen Tol ¹ , Hubregt J. Visser ^{2,3}
	¹ GTX Medical BV, The Netherlands, ² Eindhoven University of Technology, The Netherlands, ³ imec / Holst Centre, The Netherlands
	? -Materials Board Room
WPP32	A Novel Dual Band Defected Ground Structure for Short Range Wireless Power Transfer ApplicationsN/A
	Shalin Verma ¹ , Dinesh Rano ¹ , Mohammad Hashmi ^{1,2} ¹ IIIT Delhi, India, ² Nazarbajev University,
WPP33	Kazakhstan Wireless Power Transfer through Low-e GlassN/A
	Shengming Shan ¹ , Vincent Hsiao ¹ , Ruey-Bing Hwang ² SWR Technology Inc., United States of America, ² National Chiao Tung University, Taiwan

WPP34	Designment of Wireless Power Transmitting System with Magnetic Megahertz MetamaterialsN/A Guo Li', Lifang Lang', Jie Ren', Kai Fang', Yong Sun', Yewen Zhang', Yunhui Li', Hong Chen' 'Tongji University, China
/V/DD32	An Efficient Metamaterial Recod Decign of Wireless Power Transfer System

- WPP35 An Efficient Metamaterial Based Design of Wireless Power Transfer SystemN/A

 Pratim Dasmahapatra¹, Tarakeswar Shaw¹, Soumyadeep Kal¹, Debasis Mitra¹

 Indian Institute of Engineering Science and Technology, India
- WPP36 Qi Compliant Wireless Charger with PCB Integrated Magnetic MaterialN/A

 Gerald Weis¹, Ivan Salkovic¹, Gerald Weidinger¹, Mario Schober¹, Johannes Stahr¹, Ronald Sekavcnik¹

 ¹AT & S Austria Technologie & Systemtechnik Aktiengesellschaft, Austria

WPTC-P3 -Data and Energy Transmission

Siemens Board Room

- WPP37 Multiple FSK Data and Power Transmission System using Magnetic Resonance Wireless

 Power Transfer.....N/A

 Masaki Ishii¹, Kosuke Yamanaka¹, Masahiro

 Sasaki¹ Shibaura Institute of Technology, Japan
- WPP38 A Novel Simultaneous Wireless Information and Power Transfer System.....N/A

 Xin Liu¹, Xijun Yang¹, Dianguang Ma¹, Nan Jin², Xiaoyang Lai¹, Houjun Tang¹

 Shanghai Jia Tong University, China, ²Zhengzhou University of Light Industry, China
- WPP39 125 kHz Wireless Energy and 25 kbps Data Transfer for Wearable Device.....N/A Diyang Gao¹, Rongbeng Zhai¹, Peter Baltus¹, Huib Visser¹, Hao Gao¹
 1Eindhoven University of Technology, The Netherlands
- WPP40 Data Communication over a Novel Capacitive Resonant Wireless Power Transmission System.....N/A
 Semion Belau¹, Susanna Vital de Campos de Freitas¹, Fabiano Cezar Domingos¹, Rashid Mirzavand¹, Pedram Mousavi¹
 'University of Alberta, Canada
- WPP41 Impact of 5G Waveforms on Energy Harvesting Rectifier Performance.....N/A

 Oludotun Olukoya¹, Boris Malcic², Djuradj Budimir¹, Djuradj Budimir³

 'Westminster University, United Kingdom, ²University of Banja Luka, Bosnia and Herzegovina, ³University of Belgrade, Serbia
- WPP42 Mixed-Time Scale Based Adaptive Mode Switching for Dual Mode SWIPT.....N/A Jong Jin Park¹, Jong Ho Moon¹, Kang-Yoon Lee¹, Dong In Kim¹

 Sungkyunkwan University, Korea

Poster Session I - WoW 15:15 - 17:00Chair: Christopher Kwan WoW-PI - Optimisation/Economics Maxwell Library WoPI Parameter Optimization of Modern Tram Wireless Power Transfer Power Supply System.....49 Geng Yuyu¹, Wang Yi¹, Yang Zhongping¹, Lin Fei¹ Beijing liaotong University, China WoP2 Inductive Power Transfer Charging Infrastructure for Electric Vehicles: A New Zealand Case Study.....53 Mingyue (Selena) Sheng!, Ajith Viswanath Sreenivasan!, Grant A. Covic!, Douglas Wilson!, Basil Sharp! University of Auckland, New Zealand Data-Driven Design and Assessment of Dynamic Wireless Charging Systems.....59 WoP3 Diala Haddad¹, Theodora Konstantinou¹, Akhil Prasad¹, Zhanxiang Hua¹, Dionysios Aliprantis¹, Konstantina Gkritza¹, Steven Pekarek¹ IPurdue University, United States of America WoW-P2 - Magnetic Design Maxwell Library WoP4 Investigation of the Influence of Split Ferrite Tiles in an Inductive Charging System with FEM-Simulation.....65 Timo Lämmle¹, Nejila Parspour², Christian Fuchs² ¹MAHLE International GmbH, Germany, ²University of Stuttgart, Germany Statistical Model of Foreign Object Detection for Wireless EV Charger.....71 WoP5 Kaiwen Gan¹, Huan Zhang¹, Chen Yao¹, Xiaoyang Lai¹, Nan Jin², Houjun Tang¹ ¹Shanghai Jiao Tong University, China, ²Zhengzhou University of Light Industry, China WoW-P3 — System Characterisation Maxwell Library WoP6 Analysis of Bifurcation in Series-Series and Series-Parallel Compensated Inductive Power Transfer.....75 Michal Košík¹, Jiří Lettl¹ ¹Czech Technical University in Prague, Czech Republic WoP7 Quadrature Demodulator based Output Voltage and Load Estimation of a Resonant

O. Trachtenberg¹, A. Shoihet¹, E. Beer¹, E. Fux², N. Tiktin², S. Kolesnik², A. Kuperman² ¹Nuclear Research Center of the Negev, Israel, ²Ben-Gurion University of the Negev, Israel

Maximum Efficiency Control of a Wireless EV Charger with On-Line Parameter

Inductive WPT Link.....81

University of Tehran, Iran

Ali Zakerian¹, Sadegh Vaez-Zadeh¹, Amir Babaki¹

Calculation.....85

WoP8

WoP9	Power Transfer Profile Boosting in DWC Systems by Two-Element Compensation Network89
	Manuele Bertoluzzo ¹ , Rupesh Jha ² , Giuseppe Buja ¹ ¹ University of Padova, Italy, ² Zeal College of Engineering and Research, India
WoPI0	Analysis of Electromagnetic Force on Metal Objects in Vertical Direction of Wireless Power Transfer95 Xian Zhang ¹ , Xuejing Ni ¹ , Qingxin Yang ¹ , Bin Wei ² , Songcen Wang ²
	¹ Tianjin Polytechnic University, China, ² China Electric Power Research Institute, China
WoPII	Wireless Power At-A-Distance Technology – A Strategy for Nurturing Ecosystem Development99 Philip Swan ¹
	Ossia Inc, United States of America
	– Industrial Design and Applications Boardroom
WoP12 <u>by</u>	MPPT Control for PV based Wireless Power Transfer System in Lunar Rover Secondary Side Converter105 Bingcheng Ji ¹ , Katsuhiro Hata ¹ , Takehiro Imura ¹ , Yoichi Hori ¹ , Shuhei Shimada ² , Osamu Kawasaki ²
	University of Tokyo, Japan, ² Japan Aerospace Exploration Agency, Japan
WoPI3	Strategy for Design of Misalignment Tolerant Inductive Powering System for Medical Implants I I I Arseny Danilov ¹ , Eduard Mindubaev ¹ , Rafael Aubakirov ¹ , Konstantin Gurov ¹ , Oleg Surkov ¹ , Sergey Selishchev ¹ IJSC ZITC, Russia
WoPI4	A Wide-Range IPT System for Body Worn Sensors I 16 Stephen G. Burrow ¹ , Lindsay R. Clare ¹ University of Bristol, United Kingdom
WoPI5	Approaching the Power Limit of an Electrodynamic WPTS with Nearly Coupling-Independent Operation121 Binh Duc Truong ¹ , Shad Roundy ¹ 'University of Utah, United States of America
WoPI6	Wireless Motor Drives with a Single Inverter in Primary Side of Power Transfer Systems125 Amir Babaki ¹ , Sadegh Vaez-Zadeh ¹ , Mohammad Jahanpour-Dehkordi ¹ , Ali Zakerian ¹ ¹ University of Tehran, Iran
WoPI7	Design of a 30 kW-85 kHz Wireless Power Transfer System for Charging Electric VehiclesN/A Leyla Arioua ¹ , Hadi Alawieh ¹ , Salim Guerroudj ¹ VEDECOM institute, France

Wedne	sday	19	une
-------	------	----	-----

D				
Re	σις	tra	tic	٦n
	~"	Ci u		,,,

08:00	Registration	&	Coffee

WPTC Session 3 - Wearable and Biomedical Systems

Kelvin Lecture Theatre

Chairs: Alessandra Costanzo, Alexandru Takacs

08:25 An Octave Bandwidth RF Harvesting Tee-Shirt.....N/A

José Antonio Estrada¹, Eric Kwiatkowski¹, Ana López-Yela², Mónica Borgoňós-Garcia², Daniel Segovia-Vargas², Taylor Barton, and Zoya Popović¹

¹University of Colorado, United States of America, ²Universidad Carlos III de Madrid, Spain

08:40 A Wearable Passive Microwave Fluid Sensor Wirelessly Activated.....N/A

Francesca Benassi¹, Nicola Zincarelli¹, Diego Masotti¹, Alessandra Costanzo¹

University of Bologna, Italy

08:55 Wireless Power Receiver with Wide Dynamic Range for Biomedical Implants.....N/A

Hankyu Lee¹, Seungchul Jung¹, Yeunhee Huh¹, Sang Joon Kim¹

¹Samsung Advanced Institute of Technology, South Korea

09:10 Millimeter-Wave Textile Antenna for On-Body RF Energy Harvesting in Future 5G

Networks....N/A

Mahmoud Wagih¹, Alex S. Weddell¹, Steve Beeby¹

University of Southampton, United Kingdom

09:25 Energy Harvesting of a NFC Flexible Patch for Medical Applications.....N/A

Madida Bouklachi[†], Marc Biancheri-Astier[†], Antoine Diet[†], Yann Le Bihan[†]

Sorbonne Université, France

09:40 Feasibility Study of a Wireless Power Transfer System Applied to a Left Ventricular

Assist Device....N/A

T. Campi¹, S. Cruciani¹, F. Orlando¹, F. Maradei², M. Feliziani¹

University of L'Aquila, Italy

WoW Session 3 – Multicoil Design

Turing Lecture Theatre

Chairs: David Yates, Jackman Lin

08:25 Investigation of a DD2Q Pad Structure for High Power Inductive Power Transfer.....129

Benny J. Varghese¹, Abhilash Kamineni¹, Regan A. Zane¹

¹Utah State University, United States of America

08:40 Analysis of Intermediate Resonant Couplers for High Displacement Inductive Power

Transfer..... I 34

Ahmad Bilal¹, Grant Covic¹, John Boys¹, Seho Kim¹

University of Auckland, New Zealand

08:55	Magnetic Design of a Q-Coil for a 10 kW DDQ System for Inductive Power Transfer140 Denis Kraus ¹ , Hans-Georg Herzog ¹ ¹ Technical University of Munich, Germany
09:10	Reduced Switch Operation of the Tripolar for Interoperability in Inductive Power Transfer144 Kaiquan Sun¹, Grant A. Covic¹, Duleepa Thrimawithana¹, Seho Kim¹ 'University of Auckland, New Zealand
09:25	A Three-Phase Inductive Power Transfer Coil with SAE J2954 WPT3 Magnetic Interoperability150 Thorsten Kurpat ¹ , Lutz Eckstein ¹ ¹RWTH Aachen University, Germany
09:40	Power Transferability Analysis of I-SS-Buck Dynamic Wireless Charging System I 56 Shuangcheng Song ¹ , Zhihao He ¹ , Chao Cui ¹ , Qianfan Zhang ¹ ¹ Harbin Institute of Technology, China
09:55	Transit
	Talk 3 cture Theatre ant Covic, Alessandra Costanzo
10:00	Advances in Wireless Power Transfer Technology & Implanted Medical DevicesN/A Mirko de Melis Medtronic, United States of America
Coffee Br	reak
10:45	Coffee Break
Kelvin Le	ession 4 – Microwave Power Converters cture Theatre uradj Budimir, Kenjiro Nishikawa
11:15	Time Trajectory Rectifier Impedance AnalysisN/A Hans W. Pflug ¹ , Hubregt J. Visser ² GTX Medical BV, The Netherlands, ² imec / Holst Centre, The Netherlands
11:30	Investigation of a GaN-Based Bidirectional Wireless Power Converter Using Resonant Inductive CouplingN/A Haimeng Wu¹, Xiang Wang¹, Bowen Gu¹, Volker Pickert¹ Newcastle University, United Kingdom
11:45	Comparisons of MOSFET and Relay Switches in Impedance Matching Networks for Wireless Power TransferN/A Cristina A. Alexandru ¹ , Dibin Zhu ¹ University of Exeter, United Kingdom
12:00	A Comparison of Tunnel Diode and Schottky Diode in Rectifier at 2.4 GHz for Low Input Power RegionN/A Veselin Manev ¹ , Huib Visser ¹ , Peter Baltus ¹ , Hao Gao ¹ Eindhoven University of Technology, The Netherlands

12:15	High Sensitive 2.4 GHz Band Rectenna with Direct Matching TopologyN/A
	Shunya Tsuchimoto ¹ , Kenji Itoh ¹ , Keisuke Noguchi ¹ , Jiro Ida ¹
	¹ Kanazawa Institute of Technology, Japan

WoW Session 4 – Auxiliary Systems and Emissions

Turing Lecture Theatre

Chairs: Ahn Seungyoung, Jae Lee

11:15 Effect of Fields Generated Through Wireless Power Transfer on Implantable Biomedical Devices.....160

Nunzio Pucci¹, Paul D. Mitcheson¹, Christopher H. Kwan¹, David C. Yates¹ Imperial College London, United Kingdom

I 1:30 Conducted Emission in an 85 kHz, 50 kW WPT System with Opposite-Phase Transfer and Spread Spectrum.....165

Masatoshi Suzuki¹, Kenichirou Ogawa¹, Tetsu Shijo¹, Yasuhiro Kanekiyo¹, Kazuhiro Inoue¹, Koji Ogura¹, Shuichi Obayashi¹, Masaaki Ishida¹

¹Toshiba Corporation, Japan

Omnidirectional Vehicle Sensing for Wireless Power Transfer Applications.....169 Charles A. Robinson¹, Hao Lu¹, C. W. Van Neste¹

¹Tenessee Technological University, United States of America

12:00 Wireless Charging in Electric Vehicles: EMI/EMC Risk Mitigation in Pacemakers by Active Coils.....173

S. Cruciani¹, T. Campi¹, F. Maradei², M. Feliziani¹

¹University of L'Aquila, Italy, ²Sapienza University of Rome, Italy

12:15 <u>Eigenvector Lookup Position Detection Method for Wireless Power Transfer of Electric</u> Vehicles.....177

Shihui Xu¹, Huan Zhang¹, Chen Yao¹, Dianguang Ma¹, Nan Jin², Houjun Tang¹

¹Shanghai Jiao Tong University, China, ²Zhengzhou University of Light Industry, China

Lunch

12:30 Lunch

WPTC Session 5 – Unconventional WPT Links

Kelvin Lecture Theatre

Chairs: Naoki Shinohara, Ke Wu

13:45 **Invited Talk**

Millimeter Wave Wireless Power Transmission-Technologies and Applications.....N/A Hooman Kazemi

Raytheon, United States of America

14:10 Harvesting for Scattering Modulated RF-Signals Receivable by Mobile Telephones.....N/A Matthias Schütz¹

IDP Invent AG, Switzerland

14:25	Study on Antennas for Wireless Power Transfer to In-Line Inspection RobotsN/A Isami Sato ¹ , Naoki Shinohara ¹ ¹ Kyoto University, Japan
14:40	A New Circularly Polarized Antenna Suppressing Surface Wave for Microwave Power TransmissionN/A Seishiro Kojima ¹ , Naoki Shinohara ¹ ¹ Kyoto University, Japan
14:55	An RF-Powered IoT Node for Environment SensoringN/A John Nicot ¹ , Ludivine Fadel ¹ , Thierry Taris ¹ University of Bordeaux, France
15:10	Compact Dual-Band Rectenna on a New Paper Substrate Based on Air-Filled TechnologyN/A E. Vandelle ¹ , G. Ardila ¹ , S. Hemour ² , K. Wu ³ , T.P. Vuong ¹ ¹ Université Grenoble Alpes, France, ² Université de Bordeaux, France, ³ Polytechnique Montréal, Canada
Turing L	ession 5 – Industrial Design and Applications ecture Theatre ichard McMahon, Abhilash Kamineni
13:45	Invited Talk Solution for simplified wireless Inductive Power TransferN/A Jürgen Meins University of Braunschweig, Germany
14:10	Thermal Characterisation of a Double-D Pad181 Seho Kim ¹ , Maedeh Amirpour ¹ , Grant Covic ¹ , Simon Bickerton ¹ University of Auckland, New Zealand
14:25	Design and Construction of a 100 W Wireless Charger for an E-Scooter at 6.78 MHz186 Christopher H. Kwan ¹ , Juan M. Arteaga ¹ , David C. Yates ¹ , Paul D. Mitcheson ¹ Imperial College London, United Kingdom
14:40	Contactless Energy Transfer for Inductive Electrically Excited Synchronous Machines191 David Maier ¹ , Nejila Paspour ¹ , Jonas Kurz ¹ University of Stuttgart, Germany
14:55	Performance of Inductive Power Transfer-based Pavements of Electrified Roads196 Ahmed Marghani ¹ , Douglas Wilson ¹ , Tam Larkin ¹ University of Auckland, New Zealand
15:10	Inductive Power Delivery with Acoustic Distribution to Wireless Sensors202 David E. Boyle ¹ , Steven W. Wright ¹ , Michail E. Kiziroglou ¹ , Akshayaa Pandiyan ¹ , Eric M. Yeatman ¹ Imperial College London, United Kingdom
Coffee B	Break
15.25	

15:25 Coffee Break

15:50 - 17:00 Panel Session - The future of WBG devices in power processing and wireless power Kelvin Lecture Theatre Chaired by: Compound Semiconductor Applications Catapult

Thursday 20 June

D				
Re	σις	tro	11	n
116	gιυ	יטי	LUI	\mathbf{o}

08:00	Registration	&	Coffee

WPTC Session 6 - Antenna and Systems for WPT

Kelvin Lecture Theatre

Chairs: Bart Smolders, Pedram Mousavi

08:25 Energy Focusing Through Layout-Based Frequency-Diverse Arrays.....N/A Diego Masotti¹, Mazen Shanawani¹, Alessandra Costanzo¹

University of Bologna, Italy

08:40 Implementation of a High-Efficient and Simple CPW Rectenna at the 2.45 GHz ISM Radio

Band.....N/A

Mohamed Mansour¹, Haruichi Kanaya¹

Kyushu University, Japan

08:55 An Efficient RF Power Transfer Scheme using Location-based Phase-controlled Array

Antenna....N/A

Eui Bum Lee¹, Wonshil Kang¹, Hyunchul Ku¹

¹Konkuk University, South Korea

09:10 Study on Multipath Retrodirective for Efficient and Safe Indoor Microwave Power

Transmission....N/A

Taichi Sasaki¹, Naoki Shinohara¹

Kyoto University, Japan

09:25 Efficiency of Wireless Power transfer with a Multi-sine Source Optimized for the

Propagation Channel....N/A

Regis Rousseau¹, Guillaume Villemaud¹, Florin Hutu¹

University of Lyon, France

09:40 Beaming Efficiency of I-D Frequency-Scanned Based Radiative WPT System for Wireless

Sensor Networks....N/A

Miguel Poveda-García¹, José Luis Gómez-Tornero¹

¹Technical University of Cartagena, Spain, ²University of Aveiro, Portugal

WoW Session 6 – Dynamic IPT

Turing Lecture Theatre

Chairs: Regan Zane, Seho Kim

08:25 Charging Infrastructure Design for In-motion WPT Based on Sensorless Vehicle Detection

System.....205

Katsuhiro Hata¹, Takehiro Imura¹, Hiroshi Fujimoto¹, Yoichi Hori I, Daisuke Gunji²

University of Tokyo, Japan, 2NSK Ltd., Japan

08:40 Push-pull driven Low-cost Coupler Array for Dynamic IPT systems....209

Vahid Zahiri Barsari¹, Duleepa | Thrimawithana¹, Grant A. Covic¹

University of Auckland, New Zealand

08:88 Sensorless Automatic Stop Control of Electric Vehicle in Semi-dynamic Wireless Charging System.....214

Jirawat Sithinamsuwan[†], Kensuke Hanajiri[†], Katsuhiro Hata[†], Takehiro Imura[†], Hiroshi Fujimoto[†], Yoichi Hori[†]

University of Tokyo, Japan

09:10 Comparison of Single and Three phase Dynamic Charging Systems for Electric Vehicles.....220 Van-Binh Vu¹, Mohamed Dahidah¹, Volker Pickert¹, Van-Tung Phan¹

Newcastle University, United Kingdom

09:25 One-Sided Magnetic Field Halbach Pad for EV Wireless Charging.....226

Mei Su^{1,2}, Tao Ling^{1,2}, Qi Zhu^{1,2}, and Pengcheng Wang^{1,2}

¹Central South University, China, 2Human Provincial Key Laboratory of Power Electronics Equipment and Grid, China

09:40 A Concept of Multiphase Dynamic Charging System with Constant Output Power for Electric Vehicles.....229

Van-Binh Vu¹, Mohamed Dahidah¹, Volker Pickert¹, Van-Tung Phan¹

¹Newcastle University, United Kingdom

Coffee Break

09:55 Coffee Break

WPTC Session 7 - Capacitive and Inductive WPT

Kelvin Lecture Theatre

Chairs: Pablo Pérez-Nicoli, Giuseppina Monti

10:25 High Efficient Wireless Power Transfer System for AUV with Multiple Coils and Ferrite under Sea.....N/A

Ryosuke Hasaba¹, Katsuya Okamoto¹, Tatsuo Yagi¹, Souichi Kawata¹, Kazuhiro Eguchi¹, Yoshio Koyanagi¹

Panasonic Corporation, Japan

10:40 <u>Capacitive Resonant System to Charge Devices with Metallic Embodiments.....</u>N/A <u>Susanna Vital de Campos de Freitas¹, Fabiano Cezar Domingos¹, Rashid Mirzavand¹, Pedram Mousavi¹</u>

University of Alberta, Canada

10:55 Optimizing the Power Output for a Capacitive Wireless Power Transfer System with N receivers.....N/A

Ben Minnaert¹, Franco Mastri², Alessandra Costanzo², Mauro Mongiardo³ and Nobby Stevens⁴ Odisee University College of Applied Sciences, Belgium, ²University of Bologna, Italy, ³University of Perugia, Italy, ⁴KU Leuven, Belgium

II:10 Multifactorial Rig for Study of Inductive Powering Systems with Arbitrary Orientation of the Coils....N/A

Arseny A. Danilov¹, Eduard A. Mindubaev¹, Konstantin O. Gurov¹
ISC ZITC, Russia

11:25	Determination of the Optimal Resonant Condition for Multi-receiver Wireless Power Transfer SystemsN/A Seung Beop Lee ¹ , Mingi Kim ² , In Gwun Jang ² Chonbuk National University, South Korea, ² KAIST, South Korea
11:40	A Wireless Charging Coil in Printed Circuit Board with Partially Split Conductors for Low ResistanceN/A Yujun Shin ¹ , Jaehyoung Park ¹ , Haerim Kim ¹ , Bumjin Park ¹ , Jongwook Kim ¹ , Chanjun Park ¹ , Seungyoung Ahn ¹ ¹ KAIST, South Korea
Turing Le	ession 7 – High Frequency WPT ecture Theatre erak Ozpineci, Juan Arteaga
10:25	Quarter Wavelength Surface Structures for Improved Operation in Unipolar Capacitive Power Transfer234 Donald Chaney ¹ , Charles A. Robinson ¹ , C. W. Van Neste ¹ Tennessee Technological University, United States of America
10:40	A Phase-controlled Stacked-transmitter Wireless Power Transfer System for Magnetic Field Beamforming238 Ning Kang ¹ , Ming Liu ² , Chengbin Ma ¹ Shanghai Jiao Tong University, China, ² Princeton University, United States of America
10:55	High Power Density Stacked-Coils Based Power Receiver for MHz Wireless Power Transfer244 Jibin Song ¹ , Ming Liu ² , Minfan Fu ³ , Chengbin Ma ¹ Shanghai Jiao Tong University, China, ² Princeton University, United States of America, Shanghai Tech University, China
11:10	Design of a Switchable Driving Coil for Magnetic Resonance Wireless Power Transfer249 Yelzhas Zhaksylyk ¹ , Ulrik Hanke ¹ , Mehdi Azadmehr ¹ University of South-Eastern Norway, Norway
11:25	E-Field Analysis of a 3D Capacitive Power Transfer Configuration with Single Source Excitation253 Qi Zhu ^{1,2} , Lixiang Jackie Zou ³ , Mei Su ^{1,2} , Aiguo Patrick Hu ³ ¹ Central South University, China, ² Human Provincial Key laboratory of power Electronics Equipment and Grid, China, ³ University of Auckland, New Zealand
11:40	Compactly Assembled Transmitting and Receiving Modules with Shield for Capacitive Coupling Power Transfer System257 Aam Muharam ^{1,3} , Mitsuru Masuda ² , Reiji Hattori ¹ , Abdul Hapid ³ ¹ Kyushu University, Japan, ² Furukawa Electric Co., Japan, ³ Indonesian Institute of Sciences, Indonesia
Lunch	

11:55 Lunch

WPTC Session 8 – Novel Transmitter Architectures

Kelvin Lecture Theatre

Chairs: Bart Smolders. Simon Hemour

13:20 Invited Talk

WPT: from μ W/cm² harvesting to kW capacitive powering.....N/A

Zoya Popovic

University of Colorado, United States of America

13:45 2.45-GHz Wireless Power Transmitter with Dual-Polarization-Switching Cantenna for LED Accessories....N/A

Kosuke Yoshida¹, Norifumi Kashiyama¹, Miho Kanemoto¹, Shogo Umemoto¹, Hisashi Nishikawa¹, Ami Tanaka¹, Takakuni Douseki¹

Ritsumeikan University, Japan

14:00 Thermal Performance of Class-FF Converter Used for Wireless Power Transfer in Retinal Implants.....N/A

Iman Abdali Mashhadi¹, Behzad Poorali¹, Majid Pahlevani¹

¹University of Calgary, Canada

14:15 Development of an Automatic Bidirectional Wireless Charging System for Mobile Devices.....N/A lames Washak¹, Cristina Alexandru¹, Dibin Zhu¹

¹University of Exeter, United Kingdom

14:30 Implementation of Constant Current Performance of 13.56MHz Wireless Power Transfer

System....N/A

Heng-Ming Hsu¹ , Yan-Kai Huang¹, Tung-Lin Wu¹

¹National Chung Hsing University, Taiwan

14:45 A Distributed, Phase-locked, Class-E, RF Generator with Automatic Zero-Voltage Switching.....N/A

Robert A. Moffatt¹, Trevor Howarth¹, Connor Gafner¹, Jeffrey J. Yen¹, Feng-Kai Chen¹, Josh Yu¹ Etherdyne Technologies Inc., United States of America

WoW Session 8 - Converter Design & Control

Turing Lecture Theatre

Chairs: Volker Pickert, Duleepa Thrimawithana

13:20 Invited Talk

Progress Towards Extreme Fast Wireless Static and Dynamic ChargingN/A

Burak Ozpineci

Oak Ridge National Laboratory, United States of America

13:45 500W 13.56MHz Class EF Push-pull Inverter for Advanced Dynamic Wireless Power

Applications.....263

Samer Aldhaher¹, Paul D. Mitcheson¹

Imperial College London, United Kingdom

14:00 Design Method for Resonant Inductive Power Transfer Systems Using a Resistor Ladder Prototype.....268

Aaron D. Scher¹, Bogdan Z. Savic¹, Kalena L. Ching¹, Irvin H. Nguyen¹, William Garibo¹, Mohamud Hussein¹

¹Oregon Institute of Technology, United States of America

14:15 Design of Misalignment Tolerant Control for an Inductive Charger with V2G Possibilities....273

Wiljan Vermeer¹, Soumya Bandyopadhyay¹, Pavol Bauer¹

Delft University of Technology, The Netherlands

14:30 <u>Design of the Primary Side LCC Compensation Network Based on ZVS for Wireless</u> Power Transfer Systems.....279

Yuwang Zhang^{1,2}, Yanjie Guo^{1,3}, Lifang Wang^{1,3}

¹Key Laboratory of Power Electronics and Electric Drives Institute of Electrical Engineering Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China, ³Beijing Co-Innovation Center for Electric Vehicles

14:45 A Wireless Power Transfer System with a Primary-Side Process Variable for Maximum Efficiency Control.....283

Aaron D. Scher

Oregon Institute of Technology, United States of America

Poster Session II and Coffee Break

15:00 – 17:00 Poster Session II – WPTC

Chair: Ben Minnaert

WPTC-P4— WPT Architectures

Maxwell Library

WPP43 Improving Conversion Loss Performance of Fully Passive Harmonic Transponder

at Low Temperature.....N/A

Xiaoqiang Gu¹, Simon Hemour², Ke Wu¹

Polytechnique Montreal, Canada, 2University of Bordeaux, France

WPP44 DIY Electromagnetic Phantoms for Biomedical Wireless Power Transfer Experiments.....N/A

Tom van Nunen¹, Esmee Huismans¹, Rob Mestrom¹, Mark Bentum¹, Hubregt Visser¹

¹Eindhoven University of Technology, The Netherlands

WPP45 Voltage Multiplier Rectifier with Second Harmonic Resonance for Wireless Power

Transfer System....N/A

Juwan Kim¹, Wonshil Kang¹, Hyunchul

Ku¹ Konkuk University, South Korea

WPP46 Demonstration of Sub-Terahertz Coplanar Rectenna using 265 GHz Gyrotron.....N/A

Sei Mizojiri¹, Kengo Takagi¹, Kohei Shimamura¹, Shigeru Yokota¹, Masafumi Fukunari², Yoshinori Tatematsu², Teruo Saito²

University of Tsukuba, Japan, 2University of Fukui, Japan

WPP47 The Logistics System by Rotary Wing Unmanned Aerial Vehicle with 28GHz Microwave

Power Transmission....N/A

Satoru Suganuma¹, Duc Hung Nguyen², Yuma Nishioka¹, Kohei Shimamura¹, Koichi

Mori², Shigeru Yokota¹

¹University of Tsukuba, Japan, ²Nagoya University, Japan

WPP48	Design of Rectifiers for High Power Wireless Power Transmission SystemN/A Ce Wang ¹ , Bo Yang ¹ , Naoki Shinohara ¹ 'Kyoto University, Japan
WPP49	A Rectenna Using Copper Foil on Glass to Reduce Cost of Space Solar PowerN/A Evan Shi ¹ , Erik Centeno ¹ , Rafael Figueroa ¹ , Cheng Qi ¹ , Gregory Durgin ¹ Georgia Tech, United States of America
WPP50	Photonic-Assisted Field-Probing Receiver for kW Peak-Power Wideband Radiative Wireless TransmitterN/A Young-Pyo Hong ¹ , Jung-II Park ¹ , No-Weon Kang ¹ , Dong-Joon Lee ¹ ¹ Korea Research Institute of Standards and Science, South Korea
WPP51	An RF-Powered Self-Locating Flexible Building Environment Sensor SystemN/A David Schwartz¹, Shabnam Ladan¹, Vijay Karthik Venkatasubramanian¹, Joseph Lee¹, Ping Mei¹, Brent Krusor¹, Clinton Smith¹, Shakthi Gowri¹ ¹Palo Alto Research Center, United States of America
WPP52	We've Got the Power: Overcoming the Distance Enlargement Fraud with Wireless Power TransferN/A Leo Botler ¹ , Konrad Diwold ¹ , Kay Römer ¹ Graz University of technology, Austria
WPP53	An Improved Rectenna Design for Battery-free Wireless Sensors and Structural Health MonitoringN/A A. Sidibe ¹ , A. Tacaks ¹ , A. Okba ¹ , G. Loubet ¹ **Université de Toulouse, France**
WPP54	Chipless Backscatter for Vital e-Health SensingN/A Felisberto Pereira ¹ , Ricardo Correia ¹ , Nuno B. Carvalho ¹ ¹ Universidade de Aveiro, Portugal
WPP55	Pacemaker Recharge Through Inductive Resonant Wireless Power TransferN/A Giuseppina Monti ¹ , Laura Corchia ¹ , Luciano Tarricone ¹ ¹ University of Salento, Italy
WPP56	Implantable Rectenna System for Biomedical Wireless ApplicationsN/A Shuoliang Ding ¹ , Stavros Koulouridis ² , Lionel Pichon ¹ ¹ Université Paris-Sud, France, ² University of Patras, Greece
WPP57	A Study on Dynamic Charging Using Off-Resonant Coil Array With Receiver-side CompensationN/A Tatsuya Ohashi¹, Quang-Thang Duong¹, Minoru Okada¹ ¹Nara Institute of Science and Technology, Japan
WPP58	A Reconfigurable Antenna for Enhancing the Magnetic Coupling in WPTN/A Jaafar Al Sinayyid ¹ , Hakim Takhedmit ¹ , Patrick Poulichet ¹ , Marjorie Grzeskowiak ² , Antoine Diet ³ , Gaelle Lissorgues ¹ ¹ Université Paris-Est, France, ² Deos Isae Supaero, France, ³ Université Paris-Sud, France
WPP59	13.56 MHz Near Field Magnetic Coupling Efficiency Evaluation for IMDs PoweringN/A Antoine Diet ¹ , Marc Biancheri-Astier ¹ , Yann Le Bihan ¹ , Pablo Pérez-Nicoli ² , Madjda Bouklachi ¹ ,

Olivier Meyer¹, Fernando Silveiro², Lionel Pichon¹

¹Université Paris-Sud, France, ²Universidad de la República, Uruguay

WPP60	Research on Wireless Power Transfer in Modular SpacecraftN/A Longlong Zhang ¹ , Lei Wang ¹ , Haidi Yu ¹ , Yan Zong ¹ , Yucai Zhang ¹ , Xudong Ming ¹ , Zhenyu Zhang ¹ Shandong Institute of Space Electronics Technology, China
WPP61	Charging Base Stations Deployment Algorithms for Wireless Rechargeable Sensor NetworksN/A Peng Wan ¹ , Baoyu Wu ¹ , Yuhua Cheng ¹ , Gaofeng Wang ¹ Hangzhou Dianzi University, China
WPP62	Coupled Magnetic Field-Circuit Analysis of Inductive Power Transfer in High-Potential TransformersN/A Alex Pokryvailo ¹ , Hiren Dave ¹ Spellman High Voltage Electronics Corp., United States of America
WPP63	Charging Area Extensible Wireless power Transfer System with an Orthogonal StructureN/A Chen Xu¹, Yuan Zhuang¹, Anqi Chen¹, Yi Huang¹, Jiafeng Zhou¹ ¹University of Liverpool, United Kingdom
WPP64	Innovative Technique for HPA Characteristics Extraction and Accurate Predistorsion Function ModelingN/A Blaise Mulliez ¹ , Emmanuel Moutaye ¹ , Hélène Tap ¹ ¹ Université de Toulouse, France
WPP65	MSA with Stacked Metal Rings for Rectenna System using Narrow BeamN/A Seiya Mizuno¹, Ryosuke Kashimura¹,², Tomohiro Seki¹, Yasunori Suzuki³, Hiroshi Okazaki³ ¹Nihon University, Japan, ²Japan Radio Co., Ltd., Japan, ³NTT Docomo Inc., Japan
WPP66	Free-Positioning Magnetic Resonance Wireless Power Transfer System for Biomedical DevicesN/A Kyungmin Na ¹ , Jieun Kim ¹ , Young-Jin Park ¹ ¹ Korea Electrotechnology Research Institute, South Korea
WPP67	Analysis of the Efficiency of Wireless Power Transfer to Multiple ReceiversN/A Wanberton Gabriel de Souza ¹ , Luciano Coutinho Gomes ¹ , Darizon Alves de Andrade ¹ , Lucas Rocha Lobo Lannes ¹ , Josemar Alves dos Santos Jr. ¹ , Eustáquio Fernandes Júnior ¹ 'University Federal of Uberlândia, Brasil
WPP68	Geometric Quantities Characterizing Wireless Power Transfer Between a Resonator and Resonant DipolesN/A Robert A. Moffatt ¹ Etherdyne Technologies, Inc., United States of America
WPP69	Rectenna for Bluetooth Low Energy ApplicationsN/A Boules A. Mouris ¹ , Wael Elshennawy ² , Panagiotis Petridis ³ , Yuan Ding ³ , Spyridon N. Daskalakis ³ ¹ KHT Royal Institute of Technology, Sweden, ² Orange Business Services, Egypt, ³ Heriot-Watt University, United Kingdom
WPP70	Temperature Induced Degradation of RF Energy Harvesters Efficiency: Experiments and InterpretationN/A Massimo Merenda ¹ , Riccardo Carotenuto ¹ , Francesco G. Della Corte ¹ ¹ Mediterranea University Reggio Calabria, Italy

	TROCKATI: WINELESS TO WER WEEK 2017
WPP7I	Analysis of Transmission Distance and Transmission Efficiency of Wireless Power Transfer SystemN/A Rongge Yan ¹ , Zexun Wu ¹ , Xiaoting Guo ¹ , Shaoqing Cao ¹ ¹ Hebei University of Technology
WPP72	Traveling-Wave Fed Two-Dimensional Phased-Array Antenna for Microwave-Power TransferN/A Naoki Hasegawa¹, Yuki Takagi¹, Yoshichika Ohta¹ ¹Softbank Corp., Japan
WPP73	Energy Harvesting Cooperative Wireless Systems: Probabilistic Modeling and Statistical AnalysisN/A M. Aparna ¹ , Bitragunta Sainath ¹ ¹ BITS Pilani, India
WPP74	A Study of Improve Efficiency of Broad-Angle Rectenna Using Hybrid CouplerN/A Yuki Tanaka¹, Kazuki Kanai¹, Ryosuke Hasaba¹, Hiroshi Sato¹, Yoshio Koyanagi¹, Takuma Ikeda¹, Hiroyuki Tani¹, Shoichi Kajiwara¹ and Naoki Shinohara² ¡Panasonic Corporation, Japan, ²Kyoto University, Japan
WPP75	Influences of Magnetic Couplings in Transmitter Array of MIMO Wireless Power Transfer SystemN/A Kyungtae Kim ¹ , Ji-Woong Choi ¹ Daegu Gyeongbuk Institute of Science and Technology, South Korea
WPP76	Development of Wireless Power Supply Implantable Device Based on LEDN/A Li Yamin ¹ , Tang Jun ¹ , Liu Kun ¹ ¹ Chinese Academy of Sciences, China
WPP77	Visualization of Energy Flow in Wireless Power Transfer SystemsN/A Hanwei Wang ¹ , Cheng Zhang ² , Shu Yuan Ron Hui ³ ¹ Tsinghua University, China, ² University of Manchester, United Kingdom, ³ University of Hong Kong, China
WPP78	Proposal of Simplified Transfer Function Model for Dynamic Rectified DC Voltage in DWPTN/A Kodai Takeda ¹ , Wataru Ohnishi ¹ , Takefumi Koseki ¹ ¹ University of Tokyo, Japan
WPP79	Voltage Control and Current Distribution for Multiple-Coil Wireless Power Transfer SystemN/A Weikun Cai ¹ , Houjun Tang ¹ , Dianguang Ma ¹ , Xin Liu ¹ Shanghai Jiao Tong University, China
WPP80	A Self-Synchronous Rectifier for Application of W-level Input PowerN/A Ying Wang ¹ , Gao Wei ¹ , Fei You ² , Xumin Yu ³ , Yazhou Dong ³ , Xiaojun Li ³ ¹ Northwestern Polytechnical University, China, ² University of Electronic Science and Technology of China, China, ³ China Academy of Space Technology, China
WPP81	Experimental Evaluation of Coupling Coils for Underwater Wireless Power TransferN/A Cândido Duarte¹, Francisco Gonçalves¹, Miguel Silva¹, Vasco Correia¹, Luis M. Pessoa¹

INESC TEC and FEUP, Portugal

WPP82 Hybrid Mode Wireless Power Transfer for Wireless Sensor Network.....N/A Shi-Wei Dong¹, Xiaojun Li¹, Xumin Yu¹, Yazhou Dong¹, Hao Cui¹, Tao Cui¹, Ying Wang¹, Shuo Liu ¹China Academy of Space, China WPP83 EMI Suppression of MEMS Honeycomb-Shaped Inductor on Oscillators for Wireless-Powered IC Design....N/A Hao-Jiun Wu¹, Po-Ming Wang¹, Tzuen-Hsi Huang¹, Sheng-Fan Yang² ¹National Cheng Kung University, Taiwan, 2Global Unichip Corp., Taiwan WPTC-P5- Rectifiers and Converters Siemens Board Room WPP84 A Comparative Study of Conventional Rectifier Topologies for Low Power RF Energy Harvesting.....N/A Térôme Tissier¹, Mohsen Koohestani¹, Mohamed Latrach¹ ¹ESEO-IETR. France WPP85 Modified Log Periodic Spiral Antenna for Multi-Band RF Energy Harvesting Applications.....N/A Kapil Gangwar¹, Jérôme Tissier² Indian Institute of Technology, India, 2ESEO-IETR, France Theoretical Analysis of Single Shunt Rectifiers.....N/A WPP86 Takashi Hirakawa¹, Naoki Shinohara¹ Kyoto University, Japan Design of Buck Converter with Dead-time Control and Automatic Power-Down System WPP87 for WSN Application....N/A Jefferson A. Hora¹, Aileen Chris Arellano², Eryk Dutkiewicz¹, Xi Zhu¹ ¹University of Technology Sydney, Australia, ²MSU-Iligan Institute of Technology, Philippines WPP88 A 19.6 dB Input Power Range 403 MHz Rectifier Based on Quality Factor in Matching Technique.....N/A NgocDuc Au¹, Chulhun Seo¹ Soongsil University, South Korea WPP89 Voltage-Double RF Rectifier using Inductive Matching Network.....N/A Muh-Dey Wei¹, Renato Negra¹ RWTH Aachen University, Germany WPP90 10W Class High Power C-Band Rectifier Using GaN HEMT.....N/A Satoshi Yoshida¹, Kenjiro Nishikawa¹, Shigeo Kawasaki² ¹Kagoshima University, Japan, ²Japan Aerospace Exploration Agency (JAXA), Japan WPP91 Automated Design Optimization for CMOS Rectifier Using Deep Neural Network (DNN).....N/A Heng Wah Ho¹, Wendy W.Y. Lau² GLOBALFOUNDRIES Singapore Pte. Ltd., Singapore, 2Nanyang Technological University, Singapore

WPP92 2x2 Circularly Polarized Antenna Array with Equal Phases for RF Energy Harvesting in IoT System.....N/A

Osama M. Dardeer¹, Hala A. Elsadek², Esmat A. Abdallah², Hadia M. Elhennawy¹

'Ain Shams University, Egypt, ²Electronics Research Institute, Egypt

WPP93 I MHz band rectenna with several rectifier devices in nW operation.....N/A Nobuhiko Yasumaru¹, Kanto Nakanishi¹, Kenii Itoh¹, Shunya Tsuchimoto¹, Takuya Yamada¹, Takayuki Mori¹, Jiro Ida¹ Kanazawa Institute of Technology, Japan

15:05 - 17:00Poster Session II - WoW

Chair: Sam Aldhaher

WoW-P5 – Dynamic IPT

Maxwell Libaray

Coupling Coefficient Estimation for Wireless Power Transfer System at Constant WoP18

Input Power Operation.....288

Haruko Nawada¹, Yoshiaki Takahashi¹, Katsuhiro Hata¹, Takehiro Imura¹, Hiroshi Fujimoto¹, Yoichi Hori¹, Takuya Yabumoto²

¹University of Tokyo, Japan, ²Mitsubishi Electric Corporation, Japan

WoPI9 A Dynamic Wireless Charging System with a Robust Output Voltage Respect To

Misalignment.....292

Ali Ramezani¹, Mehdi Narimani¹

¹McMaster University, Canada

A Dynamic Model for Contactless Energy Transfer Systems.....297 WoP20

Jannis Noeren¹, Nejila Parspour¹

¹University of Stuttgart, Germany

Feasibility Study on In-motion Wireless Power Transfer System Before Traffic Lights WoP21

Section....302

Dasiuke Gunji¹, Katsuhiro Hata², Osamu Shimizu², Takehiro Imura², Hiroshi Fujimoto²

¹NSK Ltd., Japan, ²University of Tokyo, Japan

WoP22 Dual-phase IPT Track Primary Evaluation Using Normalized Coupling Factor.....308

Weiting Chen¹, Feiyang Lin¹, Grant Covic¹, John Boys¹

Auckland University, New Zealand

WoP23 An Alternate Arrangement of Active and Repeater Coils for Quasi-Constant Power

Wireless EV Charging.....313

Chunsheng Wang^{1,2}, Pengcheng Wang^{1,2}, Qi Zhu^{1,2}, Mei Su^{1,2}

 $^{\rm I}$ Central South University, China, $^{\rm 2}$ Human Provincial Key Laboratory of Power Electronics Equipment and Grid, China

WoP24 A Modular and Distributed Grid Interface for Transformer-less Power Supply to Road-side

Coil Sections of Dynamic Inductive Charging Systems.....318

Giuseppe Guidi¹, Salvatore D'Arco¹, Jon Are Suul^{1,2}

¹SINTEF Energy Research, Norway, ²Norwegian University of Science and

Technology, Morway

WoW-P6 Maxwell	- High Frequency WPT Library
WoP25	Load Adaptation of Capacitive Power Transfer System with a Four-Plate Compact Capacitive Coupler324 Xueying Wu ¹ , Yugang Su ¹ , Xinyu Hou ¹ , Xiaodong Qing ¹ , Wanting Zhu ¹ Chongqing University, China
WoP26	Impacts of Coupling Plates on Single-Switch Capacitive-Coupled WPT Systems330 Yashwanth Bezawada ¹ , Ruiyun Fu ² , Yucheng Zhang ¹ Old Dominion University, United States of America, ² Mercer University, United States of America
WoP27	A 13.56 MHz Inductive Power Transfer System Operating with Corroded Coils335 Epameinondas Skountzos ¹ , Juan M. Arteaga ¹ , Eftychios Hadjittofis ¹ , David C. Yates ¹ Kyra L. Sedransk-Campbell ¹ , Paul D. Mitcheson ¹ Imperial College London, United Kingdom
WoP28	A High-Performance Double-Sided LC Compensated CPT System with Load-Independent Constant Current Output341 Jing Lian ¹ , Xiaohui Qu ¹ Southeast University, China
WoP29	A High Power WPT System for Through the Wall ApplicationsN/A Tiefeng Shi ¹ , Paul Wiener ¹ GaN Systems Inc., Canada
	– Converter Design & Control Boardroom
WoP30	Triple Subdivision Cell-to-Cell Mapping Method for Global Analysis of WPT System346 Chunsen Tang¹, Chunyan Yang¹, Yingjun Fei¹, Zhihui Wang¹, Zhiping Zuo¹, Zhenpeng Zhang² ¹Chongqing University, China, ²China Electronic Power Research Institute, China
WoP31	Full Duplex Communication Based on Partial Power Coil in Inductive Coupling Power Transfer System35 I Cheng Li ¹ , Zhi-Hui Wang ¹ , Yue Sun ¹ , Xin Dai ¹ Chongqing University, China
WoP32	High-Power WPT Systems: Step-up Transformer vs. Partial-Series Tuning357 Wenwei Victor Wang ¹ , Duleepa J. Thrimawithana ¹ ¹ University of Auckland, New Zealand
WoP33	Efficiency Maximization in Wireless Power Transfer Systems for Resonance Frequency Mismatch363 Helanka Weerasekara ¹ , Katsuhiro Hata ¹ , Takehiro Imura ¹ , Hiroshi Fujimoto ¹ , Yoichi Hori ¹ University of Tokyo, Japan
WoP34	Advantages and Tuning of Zero Voltage Switching in a Wireless Power Transfer System367 Francesca Grazian ¹ , Peter van Duijsen ¹ , Thiago B. Soeiro ¹ , Pavol Bauer ¹ Delft University of Technology, The Netherlands

WoP35	Surge Current Analysis of EV Wireless Charging System during Short-circuit Decoupling Process373 Ke Shi ¹ , Chunsen Tang ¹ , Zhihui Wang ¹ , Zhiping Zuo ¹ Chongqing University, China
WoP36	Multiple-Receiver Wireless Power Transfer with Efficient Power Control Strategy378 Weikun Cai ¹ , Houjun Tang ¹ , Xiaoyang Lai ¹ , Longzhao Sun ¹ Shanghai Jiao Tong University, China
WoP37	Inductive Power Transfer System with Automatic Control383 Chenlei Liu¹, Xin Liu² ¹Shanghai Electric Power Research Institute, China, ²Shanghai Jiao Tong University, China
WoP38	Output Voltage Range of a Resonant Inductive WPT Link Operating in Load Independent Regime387 Yotam Frechter ¹ , Yegal Darhovsky ¹ , Alon Kuperman ¹ Ben-Gurion University of the Negev, Israel
WoP39	Dynamic Modeling and Analysis of Multi-Receiver Wireless Power Transfer System39 Tian Tan¹, Kainan Chen¹, Ye Jiang¹, Zhengming Zhao¹, Liqiang Yuan¹ ¹Tsinghua University, China
WoP40	Adaptive Capacitance Impedance Matching (ACIM) of WPT Systems by Voltage Controlled Capacitors396 Stanislav Tishechkin ¹ , Shmuel (Sam) Ben-Yaakov ¹ Ben-Gurion University, Israel
WoP4I	A Wireless Power Transfer System Powering Multiple Gate Drivers in a Modular Multilevel Converter40 I Zhe Zhou¹, Weiguo Li¹,², Chenweng Cheng³, Chao Wang², Zhanfeng Deng¹, Chris Mi³ ¹Global Energy Interconnection Research Institute, China, ²State Grid Corporation of China, China, ³San Diego State University, United States of America

18:00 – 22:00 Banquet

"Tesla's Secret London Laboratory"

Friday 21 June

Registration

08:00 Registration & Coffee

WPTC & WoW Joint Session I - High Power and Ultrasonic WPT

Kelvin Lecture Theatre

Chairs: Grant Covic, Mario Ferreira

08:25 Development of a 10 kW Wireless Power Transfer System.....406

Alex Ridge $^{\scriptscriptstyle |}$, Ku Ku Ahamad $^{\scriptscriptstyle |}$, Richard McMahon $^{\scriptscriptstyle |}$, John Miles $^{\scriptscriptstyle 2}$

¹University of Warwick, United Kingdom, ²University of Cambridge, United Kingdom

08:40 Thin, Light & Flexible Magnetic Materials for 7.7 kW Wireless Power Transfer System.....N/A
Zohaib Hameed¹, Milo Oien-Rochat¹, Charles Bruzzone¹, Ian Cummings¹, Jeff Keeney¹, Michael
Benson¹

13M Company, United States of America

08:55 High Efficiency Wireless Power Transfer System using a Two-stack Hybrid Metamaterial

<u>Slab</u>.....N/A
Seongsoo Lee¹, Yeonje Cho², Seungtaek Jeong¹, Seokwoo Hong¹, Boogyo Sim¹, Hongseok Kim³,

Joungho Kim

¹Korea Advanced Institute of Science and Technology (KAIST), South Korea, ²Samsung, South Korea, ³Missouri University of Science and Technology(MST), United States of America

09:10 Resistive Matching using an AC Boost Converter for Efficient Ultrasonic Wireless Power

Transfer.....N/A

Marc Bisschop¹, Wouter A. Serdijn¹

Delft University of Technology, The Netherlands

09:25 Mutual Inductance Modeling of In-wheel Arc-shaped Coil for In-motion WPT.....N/A

Osamu Shimizu¹, Takehiro Imura¹, Hiroshi Fujimoto¹, Daisuke Gunji², Keizo Akutagawa³, Giuseppe Guidi⁴

¹University of Tokyo, Japan, ²NSK Ltd., Japan, ³Bridgestone Corporation, Japan, ⁴Sintef Energy, Norway

09:40 Transit

Plenary Talk 4

Kelvin Lecture Theatre

Chairs: Udaya Madawala, Huib Visser

09:45 Large-area Wireless Charging Enabled by Metamaterials.....N/A

Irina Khromova

Metaboards, United Kingdom

Coffee Break

10:30 Coffee Break

WPTC & WoW Joint Session 2 - Moving WPT Systems

Kelvin Lecture Theatre

Chairs: David Yates, Djuradj Budimir

11:00 **Joint Invited Talk 2**

Wireless power market set to evolve beyond mobile phones – Market overview.....N/A Dinesh Kithany

IHS Markit, United Kingdom

11:25 ID-MV Position Detection Method for Wireless Power Transfer System of Electric

Vehicle....N/A

Huan Zhang¹, Shihui Xu¹, Chen Yao¹, Houjun Tang¹

¹Shanghai Jiao Tong University, China

11:40 Separated Circular Capacitive Couplers for Rotational Misalignment of Drones.....N/A

Chanjun Park¹, Jaehyoung Park¹, Yujun Shin¹, Sungryul Huh¹, Jongwook Kim¹, Seungyoung Ahn¹

¹KAIST, South Korea

11:55 Coil Design for High Coupling Performance for Two-phase Receiver of Dynamic Wireless

Charging System....N/A

Zhiyuan Wang[†], Jiantao Zhang[†], Tianhao Huang[†], Shumei Cui[†]

¹Harbin Institute of Technology, China

12:10 – 12:45 WPW 2020 Announcement and Closing Ceremony

Kelvin Lecture Theatre