2019 7th International Conference on Smart Grid (icSmartGrid 2019)

Newcastle, Australia 9 – 11 December 2019

IEEE Catalog Number: CFP19F97-POD **ISBN:**

978-1-7281-4859-5

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP19F97-POD
ISBN (Print-On-Demand):	978-1-7281-4859-5
ISBN (Online):	978-1-7281-4858-8

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

CMT ID	Paper Title	Authors	Pages
3	Partial Shading Impact on PV Array System and the Hard-Shading Location with BP Algorithm	Wei Yin (State Grid Suzhou Power Supply Company); Qinyi Tong (State Grid Suzhou Power Supply Company); Yang Xu (State Grid Suzhou Power Supply Company); Yong Zhang (Zhejiang University)*; Yongzhi Zhou (Zhejiang University)	21-26
6	A Novel Torsional Vibration Mitigation Strategy for DFIG Based Wind Turbines	Chanditha Karunanayake (UNSW)*	27-32
8	Centralized Voltage Signal-Based Fault Detection and Classification for Islanded AC Microgrid	Anusuya Arunan (University of New South Wales)*; Jayashri Ravishankar (UNSW); Eliathamby Ambikairajah (The University of New South Wales)	33-38
9	Smart Grid Co-Simulation Tools: Review and Cybersecurity Case Study	Tan Le (Japan Advanced Institute of Science and Technology)*; Adnan Anwar (Deakin Univeristy); Razvan Beuran (Japan Advanced Institute of Science and Technology); Seng Loke (Deakin univeristy)	39-45
10	Hot Water Demand Prediction Method for Operational Planning of Residential Fuel Cell System	Yuta Tsuchiya (Waseda University)*; Yu Fujimoto (Waseda University); Akira Yoshida (Waseda University); Yoshiharu Amano (Waseda University); Yasuhiro Hayashi (Waseda University)	46-51
12	SDN Based High Availability Communication Network Architecture for Secondary Distribution Electric Power Grid Automation	Yona Andegelile (University of Dar es Salaam)*; Mussa Kissaka (University of Dar es Salaam); Nerey Mvungi (University of Dar Es Salam)	52-57
13	Power System Operation During Solar Eclipses: International Lessons Applied in Australia	Aaron Millican (AEMO)*; Darren Spoor (AEMO)	58-63
16	A Method for Performability Study on Wide Area Communication Architectures for Smart Grid	Tesfaye Amare Zerihun (NTNU - Norwegian University of Science and Technology)*; CHARLES ADRAH (NTNU); Bjarne Emil Helvik (NTNU - Norwegian University of Science and Technology)	64-73
17	A Comparison of Optical Transport Technologies for Wireless Communications Using Optical Ground Wire in Smart Grid	Kensuke Ikeda (Central Research Institute of Electric Power Industry)*; Christina Lim (University of Melbourne); Ampalavanapillai Nirmalathas (University of Melbourne); Chathurika Ranaweera (Deakin University)	74-80
18	Evaluation of Wireless Communication for Maintenance of Underground Power Transmission Lines	Michifumi Miyashita (Central Research Institute of Electric Power Industry)*	81-86
19	Movement Based Energy Management Models for Smart Buildings	Alo Allik (Estonian University of Life Sciences)*; Siim Muiste (Estonian University of Life Sciences); Heino Pihlap (Estonian University of Life Sciences)	87-91
20	Integrated Smart Heating System in Historic Buildings	Heiki Lill (Estonian University of Life Sciences)*; Alo Allik (Estonian University of Life Sciences); Janar Kalder (Estonian University of Life Sciences); Kristjan Loite (Estonian University of	92-96

		Life Sciences); Andres Annuk (Estonian	
	Performance Evaluation of Solar Poof-Ton BV	University of Life Sciences)	
22	on Eskom's LV Electric Power Distribution Networks	Technology)*; Rodney Reddy (Durban University of Technology)	97-102
24	The use of dynamic tariff by the utilities to counter act the influence of renewable energy sources	Esrom Malatji (University of Johannesburg)*	103-107
25	Comparison of Different Optimal Placement Models of FACTS Devices in Power System Networks on a Limited Budget	Esrom Malatji (University of Johannesburg)*	108-112
26	Boundary Device Management Tool for Distribution Network Model Resource Center in Advanced Distribution Management System	Xiaolu Li (Shanghai University of Electric Power)*	113-117
28	Forecasting of Electric Energy Consumption for Housing Cooperative with a Grid Connected PV System	Jorge Solis (Karlstad University)*; Tomohiro Oka (Karlstad University); Johan Ericson (Karlstad University); Magnus Nilsson (Glava Energy Center)	118-125
29	Performance enhancement of hybrid solar PV- wind system based on fuzzy power management strategy : A case study	Abdelkader Harrouz (Department of Hydrocarbon and Renewable Energy, Laboratory (LEESI), University of Adrar, Algeria)*; Saidi Ahmed (Tahri Mohammed University); Ilhami Colak (Nisantasi University); Korhan Kayisli (Nisantasi University); Ramazan Bayindir (Gazi University)	126-131
30	On&Off-Grid Hybrid Microgrid Design and Dynamic Analysis	Umit Cetinkaya (Turkish Electricity Transmission Company); Ramazan Bayindir (Gazi University)*	132-136
31	A Comparative study between Robust Control Sliding Mode and Backstepping of a DFIG Integrated to Wind Power System	Abdelkader Harrouz (Department of Hydrocarbon and Renewable Energy, Laboratory (LEESI), University of Adrar, Algeria)*; Saihi Lakhdar (Renewable Energy Development Center (CDER), 01000, Adrar, Algeria,); Youcef Bakou (URERMS Adrar); Ilhami Colak (Nisantasi University); Korhan Kayisli (Nisantasi University); Ramazan Bayindir (Gazi University)	137-143
32	A Robust Controller Based on Sliding Mode Technique of DFIG Integrated to Wind Energy System	Abdelkader Harrouz (Department of Hydrocarbon and Renewable Energy, Laboratory (LEESI), University of Adrar, Algeria)*; Youcef Bakou (URERMS Adrar); Ilhami Colak (Nisantasi University); Abdel Ghani AISSAOUI (University of Bechar); Korhan Kayisli (Nisantasi University); Ramazan Bayindir (Gazi University)	144-148
34	Technical-Economic Study for the Implementation of Solar Energy in the Presence of Biomass and Micro Hydraulic Generation, for Sectors that do not Have Electricity Supply in the Province of Bolívar- Ecuador	Daniel Icaza (Catholic University of Cuenca, Cuenca, Ecuador)*; Danny Hurtado Romero (Catholic University of Cuenca, Cuenca, Ecuador)	149-154
35	Modeling and Simulation of Polycrystalline Silicon Photovoltaic Cells	Abdelhakim Belkaid (Bordj Bou Arreridj University)*; Ilhami Colak (Nisantasi University);	155-158

		Korhan Kayisli (Nisantasi University); Mustapha SARA (University of Bordj Bou Arreridj); Ramazan Bayindir (Gazi University)	
36	Pricing Scheme for EV Charging Load Penetration in Distribution Network: Study Case Jakarta	Ardy Gamawanto (Institut Teknologi Bandung)*; Muhamad Urfan Qinthara (Institut Teknologi Bandung); Fathin Saifur Rahman (Institut Teknologi Bandung); Kevin M. Banjar Nahor (Institut Teknologi Bandung); Nanang Hariyanto (Institut Teknologi Bandung)	159-164
37	Interoperability in Smart Grid	Faten Ayadi (ENIS)*; Ilhami Colak (Nisantasi University); Ramazan Bayindir (Gazi University)	165-169
38	A Consideration of Model Based Design of Smart Grid System	Histoshi Arima (Arima Management Design, Ltd.)*; Nobumasa Matsui (Nagasaki Institute of Applied Science); Yuji Mizuno (Osaka Electro- Communication University); Fujio Kurokawa (Nagasaki Institute of Applied Science); Shinichiro Hattori (ISAHAYA ELECTRONICS CORPORATION)	170-173
39	Impact of Demand Side Management (DSM) in the City of Cuenca on the Stage of a Smart City.	Daniel Icaza (Catholic University of Cuenca, Cuenca, Ecuador)*, David Borge-Diez Departamento de Ingeniería Eléctrica y de Sistemas y Automática Universidad de León	174-180