2019 IEEE/ACM 9th Workshop on Irregular Applications: **Architectures and Algorithms** (IA3 2019)

Denver, Colorado, USA 18 November 2019

IEEE Catalog Number: CFP19A47-POD **ISBN:**

978-1-7281-5988-1

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP19A47-POD
ISBN (Print-On-Demand):	978-1-7281-5988-1
ISBN (Online):	978-1-7281-5987-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2019 IEEE/ACM 9th Workshop on Irregular Applications: Architectures and Algorithms (IA3) IA3 2019

Table of Contents

Message from the Workshop Co-chairs .iv.	
Organization y	
Keynotes .vi	

Session 1: Distributed Systems and Irregular Applications

Conveyors for Streaming Many-To-Many Communication .1 F. Miller Maley (IDA/CCR-Princeton, USA) and Jason G. DeVinney (IDA/CCS, USA)
Extending a Work-Stealing Framework with Priorities and Weights .9
Yoritaka (Kyushu Institute of Technology, Japan), Masahiro Yasugi
(Kyushu Institute of Technology, Japan), Tasuku Hiraishi (Kyoto University, Japan), and Seiji Umatani (Kanagawa University, Japan)
RDMA vs. RPC for Implementing Distributed Data Structures .1.7
Benjamin A. Brock (University of California, Berkeley, USA), Yuxin
Chen (University of California, Davis, USA), Jiakun Yan (Lawrence
Berkeley National Laboratory, USA), John Owens (University of
California, Davis, USA), Aydın Buluç (Lawrence Berkeley National
Laboratory, USA), and Katherine Yelick (Lawrence Berkeley National
Laboratory, USA)

Session 2: Mixed Precision and New Memory Hierarchies for Irregular Applications

A Mixed Precision Multicolor Point-Implicit Solver for Unstructured Grids on GPUs .23...... Aaron Walden (NASA, USA), Eric Nielsen (NASA, USA), Boris Diskin (National Institute of Aerospace, USA), and Mohammad Zubair (Old Dominion University, USA)

Mixed-Precision Tomographic Reconstructor Computations on Hardware Accelerators .31
Nicolas Doucet (Paris Observatory, France), Hatem Ltaief (King
Abdullah University of Science and Technology (KAUST)), Damien
Gratadour (Paris Observatory, France), and David Keyes (King Abdullah
University of Science and Technology (KAUST))
Metall: A Persistent Memory Allocator Enabling Graph Processing .39
Keita Iwabuchi (Lawrence Livermore National Laboratory, USA), Lance
Lebanoff (Lawrence Livermore National Laboratory, USA), Maya Gokhale
(Lawrence Livermore National Laboratory, USA), and Roger Pearce

(Lawrence Livermore National Laboratory)

Session 3: Dealing with Irregular Algorithms

iPregel: Strategies to Deal with an Extreme Form of Irregularity in Vertex-Centric Graph Processing .45...... Ludovic Anthony Richard Capelli (University of Edinburgh, UK), Nick Brown (Edinburgh Parallel Computing Centre, UK), and Jonathan Mark Bull (Edinburgh Parallel Computing Centre, UK)

Stretching Jacobi: Two-Stage Pivoting in Block-Based Factorization .5.1..... Daniel Thuerck (Machine Learning, Germany)

Session 4: Hardware evaluation and mechanisms for Irregular Applications

A Hardware Prefetching Mechanism for Vector Gather Instructions .59 Hikaru Takayashiki (Tohoku University, Japan), Masayuki Sato (Tohoku University, Japan), Kazuhiko Komatsu (Tohoku University, Japan), and Hiroaki Kobayashi (Tohoku University, Japan)
Performance Impact of Memory Channels on Sparse and Irregular Algorithms .67
Oded Green (Nvidia Corporation, USA), James Fox (Georgia Institute of
Technology, USA), Jeff Young (Georgia Institute of Technology), Jun
Shirako (Georgia Institute of Technology), and David Bader (New Jersey
Institute of Technology, USA)
Cascaded DMA Controller for Speedup of Indirect Memory Access in Irregular Applications .7.1
Tomoya Kashimata (Waseda University, Japan), Toshiaki Kitamura (Waseda
University, Japan), Keiji Kimura (Waseda University, Japan), and
Hironori Kasahara (Waseda University, Japan)