2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS 2019)

Baltimore, Maryland, USA 9 – 12 November 2019

Pages 1-844

IEEE Catalog Number: ISBN:

CFP19053-POD 978-1-7281-4953-0

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP19053-POD
ISBN (Print-On-Demand):	978-1-7281-4953-0
ISBN (Online):	978-1-7281-4952-3
ISSN:	1523-8288

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS) FOCS 2019

Table of Contents

Preface	. xiv
FOCS 2019 Organizing Committee and Sponsors	xv
FOCS 2019 Program Committee	
FOCS 2019 External Reviewers	. xvii
FOCS 2019 Awards	. xxi

Session 1A

Tight Bounds for Online Edge Coloring Ilan Reuven Cohen (CWI), Binghui Peng (Columbia University), and David Wajc (CMU)	1
Online Matching with General Arrivals Buddhima Gamlath (EPFL), Michael Kapralov (EPFL), Andreas Maggiori (EPFL), Ola Svensson (EPFL), and David Wajc (CMU)	26
Polylogarithmic Guarantees for Generalized Reordering Buffer Management Matthias Englert (University of Warwick), Harald Räcke (Technical University of Munich), and Richard Stotz (Technical University of Munich)	38
General Framework for Metric Optimization Problems with Delay or with Deadlines Yossi Azar (Tel Aviv University) and Noam Touitou (Tel Aviv University)	60

Session 1B

How to Use Heuristics for Differential Privacy Seth Neel (University of Pennsylvania), Aaron Roth (University of Pennsylvania), and Zhiwei Steven Wu (University of Minnesota)	72
The Role of Interactivity in Local Differential Privacy	94
Matthew Joseph (University of Pennsylvania), Jieming Mao (Google	
Research New York), Seth Neel (University of Pennsylvania), and Aaron	
Roth (University of Pennsylvania)	

Learning from Outcomes: Evidence-Based Rankings	106
Cynthia Dwork (Harvard University), Michael P. Kim (Stanford	
University), Omer Reingold (Stanford University), Guy N. Rothblum	
(Weizmann Institute of Science), and Gal Yona (Weizmann Institute of	
Science)	
Collaborative Learning with Limited Interaction: Tight Bounds for Distributed Exploration in	
Multi-armed Bandits	
Chao Tao (Indiana University), Qin Zhang (Indiana University), and	
Yuan Zhou (Indiana University and University of Illinois at	
Urbana-Champaign)	

Session 2A

Derandomization from Algebraic Hardness: Treading the Borders Zeyu Guo (IIT Kanpur), Mrinal Kumar (IIT Bombay), Ramprasad Saptharishi (TIFR, Mumbai), and Noam Solomon (MIT)	147
Expander Graphs – Both Local and Global Michael Chapman (The Hebrew University of Jerusalem, Israel), Nati Linial (The Hebrew University of Jerusalem, Israel), and Yuval Peled (Courant Institute of Mathematical Sciences, NYU, USA)	158
Sampling Graphs without Forbidden Subgraphs and Unbalanced Expanders with Negligible Error Benny Applebaum (Tel Aviv University, Israel) and Eliran Kachlon (Tel Aviv University, Israel)	171
Approximating Constraint Satisfaction Problems on High-Dimensional Expanders Vedat Levi Alev (University of Waterloo, Canada), Fernando Granha Jeronimo (University of Chicago, USA), and Madhur Tulsiani (Toyota Technological Institute Chicago, USA)	180

Session 2B

Adversarial Bandits with Knapsacks Nicole Immorlica (Microsoft Research), Karthik Abinav Sankararaman (Facebook/University of Maryland College Park), Robert Schapire (Microsoft Research), and Aleksandrs Slivkins (Microsoft Research)	202
Approximation Schemes for a Unit-Demand Buyer with Independent Items via Symmetries Pravesh Kothari (Carnegie Mellon University), Sahil Singla (Princeton University), Divyarthi Mohan (Princeton University), Ariel Schvartzman (Princeton University), and S. Matthew Weinberg (Princeton University)	220
Improved Truthful Mechanisms for Combinatorial Auctions with Submodular Bidders Sepehr Assadi (Rutgers University) and Sahil Singla (Princeton University and Institute for Advanced Study)	233
Settling the Communication Complexity of Combinatorial Auctions with Two Subadditive Buyers <i>Tomer Ezra (Tel Aviv University), Michal Feldman (Tel Aviv</i> <i>University), Eric Neyman (Columbia University), Inbal Talgam-Cohen</i> <i>(Technion), and Matt Weinberg (Princeton University)</i>	249

Session 3A

Reed-Muller Codes Polarize	
Emmanuel Abbe (EPFL (Switzerland) and Princeton University (United States)) and Min Ye (Princeton University, United States)	
SETH-Hardness of Coding Problems Noah Stephens-Davidowitz (Massachussetts Institute of Technology) and Vinod Vaikuntanathan (Massachussetts Institute of Technology)	
Quasilinear Time List-Decodable Codes for Space Bounded Channels Jad Silbak (Tel Aviv University), Swastik Kopparty (Rutgers University), and Ronen Shaltiel (University of Haifa)	302
Optimal Document Exchange and New Codes for Insertions and Deletions Bernhard Haeupler (Carnegie Mellon University)	334
Radio Network Coding Requires Logarithmic Overhead	

Session 3B

Fully Dynamic Maximal Independent Set in Expected Poly-Log Update Time	70
 Fully Dynamic Maximal Independent Set with Polylogarithmic Update Time	82
A New Deterministic Algorithm for Dynamic Set Cover	.06
Sensitive Distance and Reachability Oracles for Large Batch Updates	-24
Dynamic Approximate Shortest Paths and Beyond: Subquadratic and Worst-Case Update Time	36
Dynamic Matrix Inverse: Improved Algorithms and Matching Conditional Lower Bounds	-56

Session 4

Lower Bounds for Maximal Matchings and Maximal Independent Sets	481
Automating Resolution is NP-Hard Albert Atserias (Universitat Politecnica de Catalunya) and Moritz Müller (Universitat Politecnica de Catalunya)	
NEEXP is Contained in MIP* Anand Natarajan (California Institute of Technology) and John Wright (California Institute of Technology)	

Session 5A

Inapproximability of Clustering in Lp Metrics	519
Near-Linear Time Approximations Schemes for Clustering in Doubling Metrics	540
A Polynomial-Time Approximation Scheme for Facility Location on Planar Graphs	560
Smoothed Analysis in Unsupervised Learning via Decoupling	582

Session 5B

Perfect Zero Knowledge for Quantum Multiprover Interactive Proofs	611
Leakage-Resilient Secret Sharing Against Colluding Parties	636
onic Conditional Disclosure of Secrets and Applications Nico Döttling (CISPA Helmholtz Center for Information Security, Germany), Sanjam Garg (University of California, Berkeley), Vipul Goyal (Carnegie Mellon University), and Giulio Malavolta (Simons Institute for the Theory of Computing, USA)	661
Non-Malleable Commitments using Goldreich-Levin List Decoding Vipul Goyal (Carnegie Mellon University) and Silas Richelson (UC Riverside)	686

Session 6A

Distributed Local Approximation Algorithms for Maximum Matching in Graphs and Hypergraphs David G. Harris (University of Maryland)	700
Beyond the Lovász Local Lemma: Point to Set Correlations and Their Algorithmic Applications Dimitris Achlioptas (University of California Santa Cruz), Fotis Iliopoulos (University of California Berkeley), and Alistair Sinclair (University of California Berkeley)	725
Beyond Trace Reconstruction: Population Recovery from the Deletion Channel Frank Ban (UC Berkeley), Xi Chen (Columbia University), Adam Freilich (Columbia University), Rocco A. Servedio (Columbia University), and Sandip Sinha (Columbia University)	745
Multi-resolution Hashing for Fast Pairwise Summations Moses Charikar (Stanford University) and Paris Siminelakis (Stanford University)	769

Session 6B

Fast Generalized DFTs for all Finite Groups Chris Umans (California Institute of Technology)	793
Waring Rank, Parameterized and Exact Algorithms	. 806
More Barriers for Rank Methods, via a "numeric to Symbolic" Transfer Ankit Garg (Microsoft Research India), Visu Makam (Institute for Advanced Study), Rafael Oliveira (University of Toronto), and Avi Wigderson (Institute for Advanced Study)	. 824
Towards a Theory of Non-Commutative Optimization: Geodesic 1st and 2nd Order Methods for Moment Map	os
and Polytopes	. 845
Peter Bürgisser (Technische Universität Berlin), Cole Franks (Rutgers	
University, New Brunswick), Ankit Garg (Microsoft Research India),	
Rafael Oliveira (University of Toronto), Michael Walter (University of	
Amsterdam), and Avi Wigderson (Institute for Advanced Study)	

Session 7A

62
76

 Random k-out Subgraph Leaves only O(n/k) Inter-Component Edges	16
New Notions and Constructions of Sparsification for Graphs and Hypergraphs	.0
Linear-Time and Efficient Distributed Algorithms for List Coloring Graphs on Surfaces	:9
Session 7B	
A Quantum Query Complexity Trichotomy for Regular Languages	2
Exponential Separation between Quantum Communication and Logarithm of Approximate Rank	6
Quantum Log-Approximate-Rank Conjecture is Also False 98 Anurag Anshu (University of Waterloo and Perimeter Institute, Canada), 98 Naresh Goud Boddu (National University of Singapore), and Dave 70 Touchette (University of Waterloo, Perimeter Institute and Universite de Sherbrooke, Canada)	2
Quantum Advantage with Noisy Shallow Circuits in 3D99Sergey Bravyi (IBM T. J. Watson Research Center), David Gosset99(Department of Combinatorics and Optimization and Institute for Quantum Computing, University of Waterloo), Robert Koenig (Institute for Advanced Study, Zentrum Mathematik, Technical University of Munich), and Marco Tomamichel (Centre for Quantum Software and Information, University of Technology Sydney)	15
Stoquastic PCP vs. Randomness 100 Dorit Aharonov (The Hebrew University of Jerusalem, Israel) and Alex Bredariol Grilo (CWI and QuSoft, The Netherlands))()
Computationally-Secure and Composable Remote State Preparation	24

Session 8

Efficient Construction of Rigid Matrices Using an NP Oracle Josh Alman (MIT) and Lijie Chen (MIT)	1034
Faster Minimum k-cut of a Simple Graph Jason Li (Carnegie Mellon University)	1056
Truly Optimal Euclidean Spanners	1078

Session 9A

Sublinear Algorithms for Gap Edit Distance
Approximation Algorithms for LCS and LIS with Truly Improved Running Times
Faster Matroid Intersection
Deeparnab Chakrabarty (Dartmouth College), Yin Tat Lee (University of
Washington and Microsoft Research), Aaron Sidford (Stanford
University), Sahil Singla (Princeton University and Institute for
Advanced Study), and Sam Chiu-wai Wong (Microsoft Research)
Balancing Straight-Line Programs

Session 9B

Spectral Analysis of Matrix Scaling and Operator Scaling Tsz Chiu Kwok (Shanghai University of Finance and Economics), Lap Chi Lau (University of Waterloo), and Akshay Ramachandran (University of Waterloo)	1184
Noise Sensitivity on the p -Biased Hypercube Noam Lifshitz (Einstein Institute of Mathematics, Hebrew University of Jerusalem) and Dor Minzer (Institute for Advanced Study, Princeton)	1205
The Complexity of 3-Colouring H-Colourable Graphs Andrei Krokhin (Durham University) and Jakub Opršal (Durham University)	1227
Hardness Magnification for all Sparse NP Languages	1240

Session 10A

The Average-Case Complexity of Counting Cliques in Erds-Rényi Hypergraphs Enric Boix-Adserà (MIT), Matthew Brennan (MIT), and Guy Bresler (MIT)	1256
Non-deterministic Quasi-Polynomial Time is Average-Case Hard for ACC Circuits Lijie Chen (Massachusetts Institute of Technology)	1281
Why are Proof Complexity Lower Bounds Hard? Jan Pich (University of Oxford) and Rahul Santhanam (University of Oxford)	1305

Polynomial Calculus Space and Resolution Width	1325
Nicola Galesi (Sapienza University Rome), Leszek Kolodziejczyk	
(University of Warsaw), and Neil Thapen (Czech Academy of Sciences)	

Session 10B

Faster Polytope Rounding, Sampling, and Volume Computation via a Sub-Linear Ball Walk	38
Modified log-Sobolev Inequalities for Strongly Log-Concave Distributions	58
Mary Cryan (University of Edinburgh), Heng Guo (University of	
Edinburgh), and Giorgos Mousa (University of Edinburgh)	
Fast Uniform Generation of Random Graphs with Given Degree Sequences 13 Andrii Arman (Monash University), Pu Gao (University of Waterloo), and	71
Nicholas Wormald (Monash University)	
A Deterministic Algorithm for Counting Colorings with 2-Delta Colors	80
Jingcheng Liu (University of California, Berkeley), Alistair Sinclair	
(University of California, Berkeley), and Piyush Srivastava (Tata	
Institute of Fundamental Research, India)	

Session 11A

Breaking of 1RSB in Random Regular MAX-NAE-SAT	.405
Optimization of the Sherrington-Kirkpatrick Hamiltonian	417
A Tight Analysis of Bethe Approximation for Permanent	.434
The Kikuchi Hierarchy and Tensor PCA	.446

Session 11B

Finding Monotone Patterns in Sublinear Time	1469
Omri Ben-Eliezer (Tel Aviv University), Clément Canonne (Stanford	
University), Shoham Letzter (ETH Institute for Theoretical Studies),	
and Erik Waingarten (Columbia University)	
Agreement Testing Theorems on Layered Set Systems	1495
Yotam Dikstein (Weizmann Institute of Science) and Irit Dinur	
(Weizmann Institute of Science)	

A Characterization of Graph Properties Testable for General Planar Graphs with one-Sided Error (It's	
all About Forbidden Subgraphs)	. 1525
Artur Czumaj (University of Warwick) and Christian Sohler (TU	
Dortmund)	
Junta Correlation is Testable	1549
Anindya De (University of Pennsylvania), Elchanan Mossel (MIT), and	
Joe Neeman (UT Austin)	

Session 12A

An Improved Lower Bound for Sparse Reconstruction from Subsampled Hadamard Matrices	1564
 (Nearly) Sample-Optimal Sparse Fourier Transform in Any Dimension; RIPless and Filterless	1568
Efficient Truncated Statistics with Unknown Truncation	1578
Residual Based Sampling for Online Low Rank Approximation	1596

Session 12B

Near-Optimal Massively Parallel Graph Connectivity	615
Exponentially Faster Massively Parallel Maximal Matching	637
Conditional Hardness Results for Massively Parallel Computation from Distributed Lower Bounds 1 Mohsen Ghaffari (ETH Zurich), Fabian Kuhn (University of Freiburg), and Jara Uitto (Aalto University)	1 650
Parallel Reachability in Almost Linear Work and Square Root Depth	664

Author Index