2019 IEEE Symposium on Security and Privacy (SP 2019)

San Francisco, California, USA 19 – 23 May 2019

Pages 1-723

IEEE Catalog Number: CFP19020-POD ISBN: 978-1-5386-6661-6

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP19020-POD

 ISBN (Print-On-Demand):
 978-1-5386-6661-6

 ISBN (Online):
 978-1-5386-6660-9

ISSN: 1081-6011

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

2019 IEEE Symposium on Security and Privacy SP 2019

Table of Contents

Message from the General Chair	
Message from the Program Chairs	
Organizing Committee	
Program Committee x	(XII
Session 1: Hardware Security	
Spectre Attacks: Exploiting Speculative Execution Paul Kocher (Independent (www.paulkocher.com)), Jann Horn (Google Project Zero), Anders Fogh (G DATA Advanced Analytics), Daniel Genkin (University of Pennsylvania and University of Maryland), Daniel Gruss (Graz University of Technology), Werner Haas (Cyberus Technology), Mike Hamburg (Rambus, Cryptography Research Division), Moritz Lipp (Graz University of Technology), Stefan Mangard (Graz University of Technology), Thomas Prescher (Cyberus Technology), Michael Schwarz (Graz University of Technology), and Yuval Yarom (University of Adelaide and Data61)	1
SoK: The Challenges, Pitfalls, and Perils of Using Hardware Performance Counters for	00
Security	. 20
Theory and Practice of Finding Eviction Sets Pepe Vila (IMDEA Software Institute/Technical University of Madrid (UPM)), Boris Köpf (Microsoft Research), and José F. Morales (IMDEA Software Institute)	39
Exploiting Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer Attacks Lucian Cojocar (Vrije Universiteit Amsterdam), Kaveh Razavi (Vrije Universiteit Amsterdam), Cristiano Giuffrida (Vrije Universiteit Amsterdam), and Herbert Bos (Vrije Universiteit Amsterdam)	55
Self-Encrypting Deception: Weaknesses in the Encryption of Solid State Drives	72

RIDL: Rogue In-Flight Data Load	38
Session 2: Blockchain & Cryptocurrency	
Perun: Virtual Payment Hubs over Cryptocurrencies)6
Redactable Blockchain in the Permissionless Setting	24
Proof-of-Stake Sidechains	39
Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake	57
Lay Down the Common Metrics: Evaluating Proof-of-Work Consensus Protocols' Security	75
XCLAIM: Trustless, Interoperable, Cryptocurrency-Backed Assets	€33
Session 3: Web Security	
Does Certificate Transparency Break the Web? Measuring Adoption and Error Rate	11
EmPoWeb: Empowering Web Applications with Browser Extensions	27

"If HTTPS Were Secure, I Wouldn't Need 2FA" - End User and Administrator Mental Models of HTTPS	.
Katharina Krombholz (CISPA Helmholtz Center for Information Security), Karoline Busse (Bonn University), Katharina Pfeffer (SBA Research), Matthew Smith (Bonn University / FhG FKIE), and Emanuel von Zezschwitz (Bonn University / FhG FKIE)	
Fidelius: Protecting User Secrets from Compromised Browsers	
Postcards from the Post-HTTP World: Amplification of HTTPS Vulnerabilities in the Web Ecosystem	
Session 4: Privacy	
Towards Practical Differentially Private Convex Optimization	ı
PrivKV: Key-Value Data Collection with Local Differential Privacy	
Differentially Private Model Publishing for Deep Learning	
KHyperLogLog: Estimating Reidentifiability and Joinability of Large Data at Scale	ı
Characterizing Pixel Tracking through the Lens of Disposable Email Services	1

Session 6: Protocols and Authentication

Reasoning Analytically about Password-Cracking Software	380
True2F: Backdoor-Resistant Authentication Tokens	398
Beyond Credential Stuffing: Password Similarity Models Using Neural Networks	417
The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations Eyal Ronen (Tel Aviv University), Robert Gillham (University of Adelaide), Daniel Genkin (University of Michigan), Adi Shamir (Weizmann Institute), David Wong (NCC Group), and Yuval Yarom (University of Adelaide / Data61)	435
An Extensive Formal Security Analysis of the OpenID Financial-Grade API Daniel Fett (yes.com AG), Pedram Hosseyni (University of Stuttgart), and Ralf Küsters (University of Stuttgart)	453
Session 5: Program Analysis	
Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Cod Obfuscation and Compiler Optimization Steven H. H. Ding (McGill University), Benjamin C. M. Fung (McGill University), and Philippe Charland (Defence R&D Canada - Valcartier, Canada)	e 472
Iodine: Fast Dynamic Taint Tracking Using Rollback-free Optimistic Hybrid Analysis	490
CaSym: Cache Aware Symbolic Execution for Side Channel Detection and Mitigation	505
Towards Automated Safety Vetting of PLC Code in Real-World Plants Mu Zhang (Cornell University), Chien-Ying Chen (University of Illinois at Urbana-Champaign), Bin-Chou Kao (University of Illinois at Urbana-Champaign), Yassine Qamsane (University of Michigan), Yuru Shao (University of Michigan), Yikai Lin (University of Michigan), Elaine Shi (Cornell University), Sibin Mohan (University of Illinois at Urbana-Champaign), Kira Barton (University of Michigan), James Moyne (University of Michigan), and Z. Morley Mao (University of Michigan)	522

Using Safety Properties to Generate Vulnerability Patches	
Session 7: Mobile and Location Security	
Short Text, Large Effect: Measuring the Impact of User Reviews on Android App Security & Privacy	
Demystifying Hidden Privacy Settings in Mobile Apps	
Security of GPS/INS Based On-road Location Tracking Systems	
Understanding the Security of ARM Debugging Features	
Tap 'n Ghost: A Compilation of Novel Attack Techniques against Smartphone Touchscreens 620 Seita Maruyama (Waseda University), Satohiro Wakabayashi (Waseda University), and Tatsuya Mori (Waseda University / RIKEN AIP)	
SensorID: Sensor Calibration Fingerprinting for Smartphones	
Session 8: Machine Learning	
Certified Robustness to Adversarial Examples with Differential Privacy	

DEEPSEC: A Uniform Platform for Security Analysis of Deep Learning Model Xiang Ling (Zhejiang University), Shouling Ji (Zhejiang University, Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies), Jiaxu Zou (Zhejiang University), Jiannan Wang (Zhejiang University), Chunming Wu (Zhejiang University), Bo Li (UIUC), and Ting Wang (Lehigh University)	573
Exploiting Unintended Feature Leakage in Collaborative Learning	591
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks	707
Helen: Maliciously Secure Coopetitive Learning for Linear Models	724
Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning Milad Nasr (University of Massachusetts Amherst), Reza Shokri (National University of Singapore), and Amir Houmansadr (University of Massachusetts Amherst)	739
Session 9: Fuzzing	
Razzer: Finding Kernel Race Bugs through Fuzzing	754
Dae R. Jeong (KAIST), Kyungtae Kim (Purdue University), Basavesh	
Dae R. Jeong (KAIST), Kyungtae Kim (Purdue University), Basavesh Shivakumar (Purdue University), Byoungyoung Lee (Seoul National University, Purdue University), and Insik Shin (KAIST) ProFuzzer: On-the-fly Input Type Probing for Better Zero-Day Vulnerability Discovery	769
Dae R. Jeong (KAIST), Kyungtae Kim (Purdue University), Basavesh Shivakumar (Purdue University), Byoungyoung Lee (Seoul National University, Purdue University), and Insik Shin (KAIST) ProFuzzer: On-the-fly Input Type Probing for Better Zero-Day Vulnerability Discovery Wei You (Purdue University), Xueqiang Wang (Indiana University Bloomington), Shiqing Ma (Purdue University), Jianjun Huang (Renmin University of China), Xiangyu Zhang (Purdue University), XiaoFeng Wang (Indiana University Bloomington), and Bin Liang (Renmin University of China) Full-Speed Fuzzing: Reducing Fuzzing Overhead through Coverage-Guided Tracing	769 787
Dae R. Jeong (KAIST), Kyungtae Kim (Purdue University), Basavesh Shivakumar (Purdue University), Byoungyoung Lee (Seoul National University, Purdue University), and Insik Shin (KAIST) ProFuzzer: On-the-fly Input Type Probing for Better Zero-Day Vulnerability Discovery Wei You (Purdue University), Xueqiang Wang (Indiana University Bloomington), Shiqing Ma (Purdue University), Jianjun Huang (Renmin University of China), Xiangyu Zhang (Purdue University), XiaoFeng Wang (Indiana University Bloomington), and Bin Liang (Renmin University of China) Full-Speed Fuzzing: Reducing Fuzzing Overhead through Coverage-Guided Tracing Stefan Nagy (Virginia Tech) and Matthew Hicks (Virginia Tech) NEUZZ: Efficient Fuzzing with Neural Program Smoothing Dongdong She (Columbia University), Kexin Pei (Columbia University), Dave Epstein (Columbia University), Junfeng Yang (Columbia University), Baishakhi Ray (Columbia University), and Suman Jana	769 787 303

Session 10: Side Channels and Data Leakage

Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels Daniel Genkin (University of Michigan), Mihir Pattani (University of Pennsylvania), Roei Schuster (Tel Aviv University and Cornell Tech), and Eran Tromer (Tel Aviv University and Columbia University)	853
Port Contention for Fun and Profit	870
Attack Directories, Not Caches: Side Channel Attacks in a Non-Inclusive World Mengjia Yan (University of Illinois at Urbana Champaign), Read Sprabery (University of Illinois at Urbana Champaign), Bhargava Gopireddy (University of Illinois at Urbana Champaign), Christopher Fletcher (University of Illinois at Urbana Champaign), Roy Campbell (University of Illinois at Urbana Champaign), and Josep Torrellas (University of Illinois at Urbana Champaign)	888
Hard Drive of Hearing: Disks that Eavesdrop with a Synthesized Microphone Andrew Kwong (University of Michigan), Wenyuan Xu (Zhejiang	905
University), and Kevin Fu (University of Michigan)	
Session 11: Systems and Applied Security	
	onse 920
Session 11: Systems and Applied Security "Should I Worry?" A Cross-Cultural Examination of Account Security Incident Response	
Session 11: Systems and Applied Security "Should I Worry?" A Cross-Cultural Examination of Account Security Incident Respections M. Redmiles (University of Maryland) Bitcoin vs. Bitcoin Cash: Coexistence or Downfall of Bitcoin Cash?	935

SoK: Shining Light on Shadow Stacks	85
Kiss from a Rogue: Evaluating Detectability of Pay-at-the-Pump Card Skimmers	00
Session 12: Cryptography & Encrypted Data	
Blind Certificate Authorities	15
Data Recovery on Encrypted Databases with k-Nearest Neighbor Query Leakage	33
Threshold ECDSA from ECDSA Assumptions: The Multiparty Case	51
Learning to Reconstruct: Statistical Learning Theory and Encrypted Database Attacks	67
On the Security of Two-Round Multi-Signatures	84
New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning	02
Session 13: Network Security	
Breaking LTE on Layer Two	21

HOLMES: Real-Time APT Detection through Correlation of Suspicious Information Flows
Touching the Untouchables: Dynamic Security Analysis of the LTE Control Plane
On the Feasibility of Rerouting-Based DDoS Defenses
Resident Evil: Understanding Residential IP Proxy as a Dark Service
Session 14: Program Languages
Simple High-Level Code for Cryptographic Arithmetic - With Proofs, Without Compromises
Institute of Technology), Robert Sloan (Massachusetts Institute of Technology), and Adam Chlipala (Massachusetts Institute of Technology)
Institute of Technology), Robert Sloan (Massachusetts Institute of
Institute of Technology), Robert Sloan (Massachusetts Institute of Technology), and Adam Chlipala (Massachusetts Institute of Technology) SoK: General Purpose Compilers for Secure Multi-Party Computation

SoK: Sanitizing for Security
Dokyung Song (University of California, Irvine), Julian Lettner (University of California, Irvine), Prabhu Rajasekaran (University of California, Irvine), Yeoul Na (University of California, Irvine),
Stijn Volckaert (University of California, Irvine), Per Larsen
(University of California, Irvine), and Michael Franz (University of California, Irvine)
Session 15: Web and Cloud Security
Why Does Your Data Leak? Uncovering the Data Leakage in Cloud from Mobile Apps
Measuring and Analyzing Search Engine Poisoning of Linguistic Collisions
How Well Do My Results Generalize? Comparing Security and Privacy Survey Results from MTurk, Web, and Telephone Samples
PhishFarm: A Scalable Framework for Measuring the Effectiveness of Evasion Techniques against Browser Phishing Blacklists
Session 16: IoT Security
SoK: Security Evaluation of Home-Based IoT Deployments
Dangerous Skills: Understanding and Mitigating Security Risks of Voice-Controlled Third-Party Functions on Virtual Personal Assistant Systems

Drones' Cryptanalysis - Smashing Cryptography with a Flicker Ben Nassi (Ben-Gurion University of the Negev), Raz Ben-Netanel (Ben-Gurion University of the Negev), Adi Shamir (Weizmann Institute of Science), and Yuval Elovici (Ben-Gurion University of the Negev)	1397
Dominance as a New Trusted Computing Primitive for the Internet of Things	1415

Author Index