2019 International Conference on IC Design and Technology (ICICDT 2019)

Suzhou, China 17 – 19 June 2019

IEEE Catalog Number: CFP19412-POD ISBN:

978-1-7281-1854-3

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

 IEEE Catalog Number:
 CFP19412-POD

 ISBN (Print-On-Demand):
 978-1-7281-1854-3

 ISBN (Online):
 978-1-7281-1853-6

ISSN: 2381-3555

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400

Fax: (845) 758-2633

E-mail: curran@proceedings.com Web: www.proceedings.com

Table of Contents

Papers

Session 1 - MEMS and Sensors

1.1 – High sensitive surface-acoustic-wave optical sensor based on two-dimensional perovskite 1

Tianyu Jiang, Zhenyi Ju, Houfang Liu*, Fan Yang, He Tian, Jun Fu and Tian-Ling Ren* *Tsinghua University, China*

1.2 – Miniaturized and High Precision Monitoring System for Natural Waters Using a Microflow Analyzer 5

Lin-Lin Ren, Jun Ren*, Fu-Hua Jin, Tian-Yu Jiang, Jun Fu, Yi Yang and Tian-Ling Ren* *Tsinghua University, China*

1.3 – A Gas Medium Approach To Sensitivity Improvement Of MEMS-Based Thermal Acoustic Particle Velocity Sensors 9

Wenhan Chang, Zhe Li, Shengzhan Cheng, Shoule Sun, Chengchen Gao and Yilong Hao *Peking University, China*

Session 2 - GaN technology

2.1 (Invited) – GaN Technology for 5G Application 13

Yi Pei

Dynax Semiconductor Inc., China

2.2 – Modelling on GaN Power HEMT with Condideration of Subthreshold Swing Using Artificial Intelligence Technology 17

Yuanzhe Yao, Zeheng Wang, Liang Li, Di Yang, Shengji Wang and Xinghuan Chen *University of Electronic Science and Technology of China (UESTC), China*

2.3 – The Impact of Etch Depth of D-mode AlGaN/GaN MIS-HEMTs on DC and AC Characteristics of 10 V Input Direct-Coupled FET Logic (DCFL) Inverters 20

Miao Cui^{1,2}, Yutao Cai^{1,2}, Qinglei Bu^{1,2}, Wen Liu¹, Huiqing Wen¹, Ivona Z. Mitrovic², Stephen Talyor², Paul R. Chalker² and Cezhou Zhao²

¹Xi'an Jiaotong-Liverpool University, China; ²University of Liverpool, UK

2.4 – Effect of High-k Passivation Layer on Electrical Properties of GaN Metal-Insulator-Semiconductor Devices 24

Yutao Cai¹, Yang Wang¹, Miao Cui¹, Wen Liu¹, Huiqing Wen¹, Cezhou Zhao¹, Ivona Z. Mitrovic², Stephen Taylor² and Paul R. Chalker²

¹Xi'an Jiaotong-Liverpool University, China; ²University of Liverpool, UK

Session 3 - SOI and Photodetector

3.1 (Invited) – Novel photodetectors and image sensors based on silicon-on-insulator substrate 29

J. Wan*, WZ. Bao, JN. Deng, J. Liu, M. Arsalan, ZX. Guo and XY. Cao Fudan University, China

3.2 (Invited) – Electro-thermal analysis of IGBT module from 3D CAD model

Hui Wang, Ding Gong and Chen Shen*

Suzhou Kejingda Electronics Co., Ltd, China

3.3 - 1T1C Ultra low power relative Thermal-Voltage sensor in 28nm UTBB FD-SOI CMOS technology for standard, spatial and quantum applications

Ph. Galy^{1,2}, R. Lethiecq^{1,3} and M. Bawedin³

¹STMicroelectronics, France; ²Universite de Sherbrooke, Canada; ³Univ. Grenoble Alpes, France

3.4 - Threshold Voltage Tuning of 22 nm FD-SOI Devices Fabricated With Metal Gate Last Process

Cuiqin Xu, Xuejiao Wang and Wei Liu

Shanghai Huali Integrated Circuit Corporation, China

3.5 – Compact MOS Structure & Design for Ion-Ioff Thermal control in 28nm UTBB FD-SOI CMOS technology

R. Lethiecq^{1, 2}, M. Bawedin² and Ph. Galy^{1, 3}

¹STMicroelectronics, France; ²Univ. Grenoble Alpes, France; ³Universite de Sherbrooke, Canada

Session 4: 3D package

4.1 (Invited) - Developing 3D Heterogeneous Structures for Future Chips 48

Cheng Li, Feilong Zhang, Mengfu Di, Zijin Pan and Albert Wang University of California, USA

4.2 (Invited) – Low Temperature SmartCut[™] enables High Density 3D SoC Applications 52

W. Schwarzenbach, B.-Y. Nguyen and G. Besnard SOITEC, France

4.3 - Susceptibility Evaluation of 3D Integrated Static Random Access Memory with Through-Silicon Vias (TSVs)

Xue-Bing Cao, Li-Yi Xiao, Rong-Sheng Zhang, Jia-Qiang Li, Hong-Chen Li and Jin-Xiang Wang Harbin Institute of Technology, China

Session 5: Digital IC

5.1 (Invited) - Voltage step stress: a technique for reducing test time of device ageing 58

J. F. Zhang¹, Z. Ji¹, M. Duan¹, W. Zhang¹ and C. Z. Zhao²

¹Liverpool John Moores University, UK; ²Xi'an Jiaotong-Liverpool University, China

5.2 - On-Chip Process Variation Sensor Based on Sub-Threshold Leakage Current with Weak Bias Voltages

Shengkai Lyu and Zheng Shi

Zhejiang University, China

5.3 – 10Gbps Length adaptive on-chip RF serial link for Network on Chips and Multiprocessor chips applications

M.Tmimi^{1, 2}, S.D'Amico³, J-M.Duchamp², Ph.Ferrari² and Ph.Galy¹

¹STMicroelectronics, France; ²Univ. Grenoble Alpes, France; ³University of Salento, Italy

5.4 - A 500-Mbps Digital Isolator Circuits using Counter-Pulse Immune Receiver Scheme for **Power Electronics**

Tsukasa Kagaya, Koutaro Miyazaki, Makoto Takamiya, and Takayasu Sakurai The University of Tokyo, Japan

5.5 - Standard Cell Optimization for Ultra-Low-Voltage Digital Circuits 74

Yuting Chen and Hailong Jiao

Peking University Shenzhen Graduate School, China

5.6 – Low Power Karnaugh Map Approximate Adder for Error Compensation in Loop Accumulations 78

Chunmei Yang¹ and Hailong Jiao^{1, 2}

Peking University Shenzhen Graduate School, China; Eindhoven University of Technology, Netherlands

Session 6: TFTs

6.1 (Invited) – A Novel Three-Dimensional Submicron ZnO Inverter Technology with Refined Contact Design 82

Horng-Chih Lin and Chin-I Kuan National Chiao Tung University, Taiwan, China

6.2 (Invited) – Effects of Moisture Absorption on the Electrical Behaviors of InGaZnO Thin Film Transistors 84

Chao Zhang and Xiaodong Huang Southeast University, China

6.3 – Degradation in P-type Poly-Si Thin-Film Transistors under Pulse Bias Stresses Yining Yu, Dongli Zhang, Mingxiang Wang and Huaisheng Wang Soochow University, China

6.4 – Solution Processed ZnSnO Thin-film Transistors with Peroxide- Aluminum Oxide Dielectric 91

T S Zhao^{1,2}, C Zhao^{1,2}, C Z Zhao^{1,2}, W Y Xu³, L Yang^{1,2}, I Z Mitrovic², S Hall², E G Lim^{1,2} and S C Yu^{1,2} ¹Xi'an Jiaotong-Liverpool University, China; ²University of Liverpool, UK; ³Shenzhen University, China

6.5 – Plasma-Enhanced Combustion-Processed Al₂O₃ Gate Oxide for In₂O₃ Thin Film Transistors 95

Q H Liu^{1, 2}, C Zhao^{1, 2}, C Z Zhao^{1, 2}, I Z Mitrovic², S Hall², W Y Xu³, L Yang^{1, 2}, E G Lim^{1, 2},Q N Wang^{1, 2}, Y L Wei^{1, 2} and Y X Cao^{1, 2}

¹Xi'an Jiaotong-Liverpool University, China; ²University of Liverpool, UK; ³Shenzhen University, China

Session 7: Al and Algorithm

7.1 – A Fast Load-shedding Algorithm for Power System based on Artificial Neural Network Youming Wang¹, Yong Wang¹, Ying Ding², Yingjian Zhou¹ and Zhewen Zhang¹ Shandong University, China; ²State Grid of China Technology College, China

7.2 – CNN-based Approach for Estimating Degradation of Power Devices by Gate Waveform Monitoring 104

Koutaro Miyazaki, Yang Lo, A. K. M. Mahfuzul Islam, Katsuhiro Hata, Makoto Takamiya, and Takayasu Sakurai *The University of Tokyo, Japan*

Session 8: RRAM and Synapse

8.1 (Invited) – Impact of Al $^+$ implantation on the Switching Characteristics of Al $_2$ O $_3$ /Al $_2$ O $_3$ multilayer RRAM devices 108

Hongxia Liu*, Xing Wang Xidian University, China

8.2 (Invited) – Interface and Doping Engineering of HfO₂ Based Multi-Level RRAM: Towards Synaptic Simulation for Neuromorphic Computation 112

Sourav Roy, Qiang Wang, Yunkun Wang, Yijun Zhang, Shijie Zhai, Wei Ren, Zuo-Guang Ye and Gang Niu* Xi'an Jiaotong University, China

8.3 – Characteristics of Ni/AIO_x/Pt RRAM devices with various dielectric fabrication temperatures 116

Z J Shen^{1,2}, C Zhao^{1,2}, C Z Zhao^{1,2}, I Z Mitrovic², L Yang^{1,2},W Y Xu³, E G Lim^{1,2}, T Luo^{1,2} and Y B Huang^{1,2} 1Xi'an Jiaotong-Liverpool University, China; ²University of Liverpool, UK; ³Shenzhen University, China

8.4 – Design of Artificial Spiking Neuron with SiO₂ Memristive Synapse to Demonstrate Neuron-Level Spike Timing Dependent Plasticity 120

Jessie Xuhua Niu, Hasita Veluri, Yida Li, Umesh Chand, Jin Feng Leong, Evgeny Zamburg, Maheswari Sivan and Aaron Voon-Yew Thean

National University of Singapore, Singapore

Session 9: RF IC

9.1 (Invited) – Active Rectifiers in Wireless Power Transmission Systems 123

Li Geng*, Zhongming Xue, Shiquan Fan, Dan Li and Bing Zhang

Xi'an	Jiantona	University.	China
$\Lambda I a I I$	Jiauluiiq	Ullive Sity.	OHIHIA

9.2 – A PVT Validation Phase-Lock Loop with Multi-Band VCO Applied in Closed-Loop FOGs Tsung-Yi Tsai, Ting-Sheng Wang, Yi-Jen Chiu and Chua-Chin Wang National Sun Yat-Sen University, Taiwan, China

9.3 – Design of 140GHz Narrow Band-pass Planar Filters Based on Open Loop Resonators Shengqi Shi, Yong Zhang, Delun Zhou, Ruifeng Yue and Yan Wang Tsinghua University, China

9.4 – Low Frequency Noise in CMOS Switched-g_m Mixers: A Quasi-Analytical Model 134 Benging Guo¹, Jing Gong² and Jun Chen³

¹University of Electronic Science and Technology of China, China; ²Sichuan University, China; ³Huawei Technologies Co. Ltd., China

9.5 – A CMOS Low-noise Active Mixer with Capacitive Neutralization Technique 138 Benging Guo¹, Huifen Wang² and Haifeng Liu¹

¹University of Electronic Science and Technology of China, China; ²Henan University of Technology, China

Session 10: Memory

10.1 (Invited) – Radiation effects of floating-gate (FG) and charge-trapping (CT) Flash memory technologies 142

Jinshun Bi

Institute of Microelectronics Chinese Academy of Sciences, China

10.2 – A 12T Low-Power Standard-Cell Based SRAM Circuit for Ultra-Low-Voltage Operations 145 Jiacong Sun and Hailong Jiao

Peking University Shenzhen Graduate School, China

10.3 - Ultra Low Power Single-ended 6T SRAM Using 40 nm CMOS Technology 149

Chua-Chin Wang and I-Ting Tseng

National Sun Yat-Sen University, Taiwan, China

10.4 – Performance Evaluation of Static Random Access Memory (SRAM) based on Negative Capacitance FinFET 153

Chen Sun, Kaizhen Han and Xiao Gong National University of Singapore, Singapore

10.5 - Cost-Effective Reliable EEPROM Cell Based on Single-poly Structure 157

Peiying Song¹, Quan Sun², Min Qi², Donghai Qiao^{1, 2} and Chunfeng Bai¹

¹Soochow University, China; ²Institute of Acoustics, Chinese Academy of Science, China

10.6 – Memory System Designed for Multiply-Accumulate (MAC) Engine Based on Stochastic Computing 161

Xinyue Zhang, Yuan Wang*, Yawen Zhang, Jiahao Song, Zuodong Zhang, Kaili Cheng, Runsheng Wang and Ru Huang

Peking University, China

Session 11: Analogy IC

11.1 – A Compact Low Voltage CMOS Current Mirror with High Output Resistance 165

Bai Chunfeng, Shen Xingyue, Qiao Donghai and Zhao Heming Soochow University, China

11.2 – A Low Frequency OTA Design with Temperature-Insensitive Variable Transconductance Using 180-nm CMOS Technology 168

Nanang Sulistiyanto¹, Chua-Chin Wang¹ and Robert Rieger²

¹National Sun Yat-Sen University, Taiwan, China; ²Keil University, Germany

11.3 – A Wide Temperature Range 4.6 ppm/°C Piecewise Curvature-Compensated Bandgap Reference With No Amplifiers 172

Jinghui An, Chenjian Wu and Dacheng Xu Soochow University, China

11.4 – A Current-Mode CMOS Hall Sensor Microsystem based on Four-Phase Current Spinning Technique ***

Lei Jiang¹, Xingxing Hu¹ and Yue Xu²

¹Nanjing University of Posts and Telecommunications, China; ²National and Local Joint Engineering Laboratory of RF Integration and Micro-assembly Technology Nanjing, China

Session 12: GaN Technology-II

12.1 – High-Performance Quasi-Vertical GaN Schottky Barrier Diode on Silicon Substrate with a Low Dislocation Density Drift Layer *** \$

Yue Li, Ruiyuan Yin, Ming Tao, Yilong Hao, Cheng P.Wen, Maojun Wang, Jie Zhang, Xuelin Yang and Bo Shen Peking University, China

12.2 – Toward Reliable Extraction of the Properties of Border Traps in Lateral GaN Power MOSFET with a Distributed Network Model ""% '

Ruiyuan Yin, Yue Li, Wei Lin, Cheng P. Wen, Yilong Hao, Yunyi Fu and Maojun Wang Peking University, China

12.3 – Enhanced Biased Radiation and Illumination Stress Stability of Solution-processed

Y X Fang^{1, 2}, T S Zhao^{1, 2}, C Zhao^{1, 2}, C Z Zhao^{1, 2}, I Z Mitrovic² and L Yang^{1, 2} ¹Xi'an Jiaotong-Liverpool University, China; ²University of Liverpool, UK

Session 13: Micro Systems for Health Care

13.1 (Invited) – Graphene based Wearable Sensors for Healthcare% -

Yu Pang, Zhen Yang, Yifan Yang, Xiaoming Wu, Yi Yang and Tian-Ling Ren Tsinghua University, China

Session 14: Packaging

14.1 (Invited) - Comprehensive study of wire bond reliability impacts from wire, molding compound and bond pad contamination ""% '

Lois Jinzhi Liao¹, Xi Zhang¹,Xiaomin Li¹, Younan Hua¹, Chao Fu¹, Bisheng Wang², Weikok Tee³, Boonhwa Yee³ and Songlin Mao⁴

¹Wintech Nano-Technology Services Pte Ltd. Singapore: ²Huawei Technologies Co Ltd. China: ³Sumitomo Bakelite Singapore Pte Ltd, Singapore; 4 Heraeus Zhaoyuan Precious Metal Materials Co. Ltd, China

Session 15: Poster Papers

15.1 - Design Considerations of Data Converters for Industrial Technology -

Hua Fan¹, Jiayi Zhang¹, Jingwei Cai¹, Quanyuan Feng², Dagang Li³, Kelin Zhang³, Daqian Hu³,Dezhi Xing³, Hongrui Che³, Yuanjun Cen³ and Hadi Heidari⁴

¹University of Electronic Science and Technology of China, China; ²Southwest Jiaotong University, China; ³Chengdu Sino Microelectronics Technology Co. Ltd, China; 4 University of Glasgow, UK

15.2 – A High Speed Low Power Pipelined SAR Analog to Digital Converter^{....}&\$'

Ko-Chi Kuo

National Sun Yet-sen University, Taiwan, China

Zhuogi Guo1, Rui Xu1, Li Geng1* and Baoxia Li2

¹Xi'an Jiaotong University, China; ²Xi'an Microelectronics Technology Institute, China

Yan Zhou, Chenjian Wu* and Dacheng Xu

Soochow University, China

15.5 – Effects of Substrate Terminal on the Dynamic Resistance and the Midpoint Potential of High Voltage Cascode GaN HEMTs **** 8%)

JunFeng Wu¹, YongSheng Zhu¹, GuangMin Deng¹, ShuFeng Zhao² and Yi Pe¹

¹Gpower Semiconductor Inc. China; ² Dynax Semiconductor Inc., China

Chen-Yi Zhou and Xiao-Peng Yu Zhejiang University, China

15.7 – Leakage Current Analysis for Epitaxial Silicon Pulse Radiation Detector &&:

Jiale Liu¹, Min Yu¹, Xinyang Zhao¹, Jingxi Wang¹ and Fangdong Yang² ¹Peking University, China; ²China institute of atomic energy, China

15.8 – Fast Locking Technique by Using a Programmable Operational Transconductor for a Phase Lock Loop Design *** 8&+*

Ko-Chi Kuo

National Sun Yat-Sen University, Taiwan, China

15.9 – A Write-Verification Method for Non-Volatile Memory & %

Yiping Zhang, Canyan Zhu, Lijun Zhang and Ziou Wang Soochow University, China

15.10 – High Integration Negative Charge Pump with Dual Operation Modes^{....}& (

LI Yajun^{1,2} LI Xiaopeng^{1,2,3} ZHANG Youtao^{1,2,4} CHEN Xinyu^{1,2} YANG Lei^{1,2}

¹Nanjing Guobo Electronics Co. Ltd, China; ²Nanjing Electronic Devices Institute,, China; ³Institute of RF-&OE-ICs, Southeast University, China; ⁴Science and Technology on Monolithic Intergrated Circuits and Modules laboratory, China

15.11 – Tile Buffer Design for Linear-U Data Layout in Embedded GPU , ,

Li Jiayun and Du Huimin

Xi'an University of Posts and Telecommunications, China

15.12 – Experimental Comparison of AlGaN/GaN-on-Si Schottky Barrier Diode With and Without Recessed Anode & &

Qinglei Bu, Yutao Cai, Miao cui, Huiqing Wen and Wen Liu Xi'an Jiaotong-Liverpool University, China

15.13 – Design of GaN-based Voltage Reference Circuit for a Wide-Temperature-Range Operation *** &(*

Xudong Chen, Huiqing Wen, Qinglei Bu and Wen Liu Xi'an Jiaotong-Liverpool University, China

15.14 - Design and Evaluation of GaN-based OverTemperature Protection Circuit *** \$

Lei Kang, Huiqing Wen, Qinglei Bu and Wen Liu Xi'an Jiaotong-Liverpool University, China

15.15 – Design and Evaluation of AlGaN/GaN High Electron Mobility Transistor Comparator (a) (

Bangbo Sun, Huiqing Wen, Qingling Bu and Wen Liu Xi'an Jiaotong-Liverpool University, China

15.16 – A full GaN-Integrated Sawtooth Generator based on Enhancement-mode AlGaN/GaN MIS-HEMT for GaN Power Converters & ,

Xueteng Li, Miao Cui and Wen Liu*

Xi'an Jiaotong-Liverpool University, China

15.17 - Self-healing Control and Auto-measurement Technique for Smart Distribution Grid *** %

Zai-xin Yang, Ru-lei Han, Yun-min Wang, Yuan Gao

Inner Mongolia Electric Power Research Institute, Hohhot, China

15.18 – 50% Breakdown Voltage Enhancement of p-MTJ Utilizing Sub-20ns Writing Pulse *** Teng Wang

Nanjing University of Posts and Telecommunications, China

15.19 – DNFIT Based Curve Fitting And Prediction In Semiconductor Modeling And Simulation *** -**

WenFei Hu¹, Dongsheng Ma¹, Miao li², Zhijian Pan¹, Zuochang Ye¹ and Yan Wang¹

¹Tsinghua University, China; ²Platform Design Automation, Inc., China

15.20 – The Impact of AlGaN Barrier on Transient VTH Shifts and VTH Hysteresis in Depletion and Enhancement mode AlGaN/GaN MIS-HEMTs *** 8+1

Bohan Lu, Miao Cui, Wen Liu*

Xi'an Jiaotong-Liverpool University, China

15.21 - Simulation of Proton Induced Single Event Upsets in Bulk Nano-CMOS SRAMs **** &++

Xuebing Cao, Liyi Xiao, Linzhe Li, Jie Li and Tianqi Wang

Harbin Institute of Technology, China

15.22 - A Margin Adjustable Amplifier Circuit for RRAM Read Access & %

Jinchen Liu, Ziou Wang, Yiping Zhang and Lijun Zhang

Soochow University, China

15.23 – A method for real-time measurement of seismic isolation rubber bearing based on Embedded MEMS pressure sensors (a)

Shoule Sun¹, Fanrui Meng¹, Wenhan Chang¹, Zhe Li¹, Shengzhan Cheng¹, Jie Wang¹, Yunfei Liu¹, Chengchen Gao¹ and Yilong Hao^{1, 2}

¹Peking University, China; ²Innovation Center for Micro-Nano-electronics and Integrated System, China

15.24 - 0.5~43GHz 1:2 Static Frequency Divider MMIC in InP HBT &, ,

Min Zhang¹, Xiaopeng Li¹, Youtao Zhang², Wei Cheng²

¹Nanjing Guobo Electronics Co., Ltd; ²Science and Technology on Monolithic Integrated Circuits and Modules, China

15.25 - Design of a Low-Voltage CMOS Mixer with Improved Linearity *** %

J. Gou, X.-Y. Xu and X.-G. Huang

Research Institute of China Electronic Technology Group Corporation, China

15.26 – Short-wavelength Spin Wave excitation utilizing external magnetic field&-)

B. Wei¹, X. K. Yang^{1*}, M. L. Zhang², J. Li¹, C. W. Feng¹, H. Q. Cui¹, Y. B. Chen¹, J. H. Liu¹

¹Air Force Engineering University, China; ²Air Force Communications NCO Academy, China

15.27 – Modeling Simulation and Circuit Implementation of Millimeter Wave Phase-Locked Loop Based on Simulink *** & ,

He Xiao, Xiaoying Deng and Mingcheng Zhu

Shenzhen University, China

Zhao Zhao, Yuan Wang*, Cheng Li, Xiaoxin Cui* and Ru Huang

Peking University, China

15.29 – An Application-Specific Microprocessor for Energy Metering Based on RISC-V *** **

Yaiie Wang and Nianxiong Tan

Zhejiang University, China

15.30 - Small Area High Speed Configurable FFT Processor "" %

Xiaoyu Zhang, Xin Chen and Ying Zhang

Nanjing University of Aeronautics and Astronautics, China

15.31 - A dual-threshold credit-based flow control mechanism for 3D Network-on-Chip "" %

Li Xiangli, Ge Fen, Ben Rui, Wu Ning and Zhou Fang

Nanjing University of Aeronautics and Astronautics, China

15.32 - Soft-Error-Tolerant Ultralow-Leakage 12T SRAM Bitcell Design "" %

Jianwei Jiang^{1,2,3*}, Dianpeng Lin^{1,2,3}, Jun Xiao³ and Shichang Zou^{1,3}

¹Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China; ²University of Chinese Academy of Sciences, China; ³Shanghai Huahong Grace Semiconductor Manufacturing Corporation, China

Author Index