2019 IEEE Global Engineering Education Conference (EDUCON 2019)

Dubai, United Arab Emirates 8-11 April 2019

Pages 1-769

IEEE Catalog Number: ISBN:

CFP19EDU-POD 978-1-5386-9507-4

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	
ISBN (Print-On-Demand):	
ISBN (Online):	
ISSN:	

CFP19EDU-POD 978-1-5386-9507-4 978-1-5386-9506-7 2165-9559

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Title (very long titles may be truncated)	Page range
Work in Progress: Gathering Requirements and Developing an Educational Programming Language	1–4
Work in Progress: International Student Cooperation in Capstone Research Project	5–7
Work in Progress: Novel Didactic Training Platform for Transistor Devices and Applications	8–11
Work in Progress: Self-Directed Approach for Project Based Learning Activity	12–15
Teaching Mobile Application Development in 20 Hours for High School Girls: A Web-Based Approach	16–21
Internet of Things Remote Labs: Experiences with Data Analysis Experiments for Students Education	22–27
Student Proficiency Profiles through the Computing Professional Skills Assessment	28–33
Correlating Learning Outcomes to the Graduate Attributes of the International Engineering Alliance in a Problem-Based Learning Module	34–38
Analyzing Learning Outcomes for Electronic Fundamentals Using Bloom's Taxonomy	39–44
Adaptable Concept for Projects in Computer Science Degree Programs – An Experience Report	45–50
Designing a Multi-disciplinary Group Project for Computer Science and Engineering Students	51–57
Parents' Views on Higher Education Abroad – a Focus Group Study for Launching a New Engineering University in Eastern Europe	58-62
A Basic Course Model on Information Security for High School IT Curriculum	63–70
Development of an Educational Ecosystem that Supports Engineering Research	71–78
Cyber-Training: Relations, Connections, Synergistic and Negative Reactions	79–88
Towards the Vision of an LMS Integrated, Browser-Based Simulation to Program LEGO MindStorms EV3s in ANSI-C	89–94
A Gamification Framework for Long-Term Engagement in Education Based on Self Determination Theory and the Transtheoretical Model of Change	95–101
PILAR: Sharing VISIR Remote Labs through a Federation	102-106
Integration of Real-World Project Tasks in a Course on Automation and Robot Engineering	107–114
How to Get a Badge? Unlock Your Mind	115–119
The Entrepreneurship Journey: Fostering Engineering Students' Entrepreneurship by Startup Creation	120-123
Achievement, Engagement and Student Satisfaction in a Synchronous Online Course	124–132
Communication Technologies Course with Intensive Mode Teaching: a Case Study	133–138
Analyzing the Gender Gap in Computing through the Thoughts of the Brazilian Community	139–141
Research Path that Improves Student Engagement	142–151
Dissemination of Knowledge and Sharing Experiences in Emerging Issues through a Remote Summer School	152–159
Process Learning Simulator: Trial and Error, Thinking and Learning Effectiveness Industry Perspectives on Engineering Student Outcomes – A Comparative Study of Kuwait and Kazakhstan	160–165 166–172
MOOCs in Secondary Education - Experiments and Observations from German Classrooms	173–182
Assessing Technology Adoption at a University of Technology: A Case Study of Electronic Response Systems	183–188
EduApp: A Collaborative Application for Mobile Devices to Support the Educational Process in Greek Secondary Education	189–198
Engaging Students in Computer Science Education through Game Development with Unity	199–205
How Can Computer Science Faculties Increase the Proportion of Women in Computer Science by Using Robots?	206–210
Developing Health Technology Innovators: A Collaborative Learning Approach	211–216
Including Active Learning in an Online Database Management Course for Industrial Engineering Students	217–220
Fostering Specific Dispositions of Critical Thinking for Student Engagement in Engineering	221–226
What Kind of Teacher Achieves Student Engagement in a Synchronous Online Model?	227–231
Make it Open - Improving Usability and Availability of an FPGA Remote Lab	232–236
A Study of Dispositions According to the IEEE Information Technology Curricula 2017 for German Industry and Student Population	237–244
Presenting an Open-Source Platform for Supporting Gamified Class Teaching with Peer Reviews	245–252
Boosting Student Performance with Peer Reviews; Integration and Analysis of Peer Reviews in a Gamified Software Engineering Classroom.	253–262
Thinking Maps in Teaching Analogue Circuits Concepts Applied to Electronic Engineering: A Four-Year Case Study at UESTC, China	263–270
Producing "T-shaped" Engineering Graduates: The Impact of Student Clubs as Learning Communities	271–275
Meaningful Learning Through Virtual Tutors: A Case Study	276–279
From MOOCs to Micro Learning Activities	280–288
Place and role of K-MOOC in Hungarian and Trans-border Education	289–295
Utilizing Web Analytics in the Context of Learning Analytics for Large-Scale Online Learning	296-305
Impact of Online Education in Jordan: Results from the MUREE Project	306–313
On Teaching Intercultural Competencies Using Ethnography and Cultural Dimension Theory	314–321
A Process for Extracting Knowledge Base for Chatbots from Text Corpora	322-329
STEM and Educational Robotics Using Scratch	330–336
Entrepreneurship Education for Engineering Students A Survey of Former Students' Self-Employment and Market Attraction	337–344
Solving the Problem of Limited Content Accessibility in Natural Science Disciplines for Students with Hearing Impairments at Technical University	345–351
How Electrical and Computer Engineering Departments are Preparing Undergraduate Students for the New Big Data, Machine Learning, and AI Paradigm: A	352-356

Title (very long titles may be truncated)	Page range
Collaborative Learning Through Development of Virtual DC Network Laboratory: A Case Study	357–364
Problem Tagging and Solution-Based Video Recommendations in Learning Video Environments	365–373
HeatShield: a Low-Cost Didactic Device for Control Education Simulating 3D Printer Heater Blocks	374–383
State-of-the-Art to Measure the TPACK Level of Trainees in Higher Education to Increase the Learnability of the Train-The-Trainer Sessions	384–391
Training Reading and Writing through Text-based Games; Step 1: Adapting to Gamer Type.	392-400
An Effective Framework for Enhancing Student Engagement and Performance in Final Year Projects	401-410
Exploring the Opportunities of Cisco Packet Tracer Tool For Hands-on Security Courses on Firewalls	411-418
Measuring the Developing of Competences with Collaborative Interdisciplinary Work	419-423
Promoting Computational Thinking Skills in Primary School Students to Improve Learning of Geometry	424-429
Assessment of Oral Communication in Senior Engineering Students	430-435
Teachers' Perceptions about using Serious Games in Formal Education in Jordan: Possibilities and Limitations	436-441
The Impact of Laboratory Courses in Technical Study Programs – Knowledge Earning or Not Much Learning?	442-447
Collaborative Learning with COZMO to Teach Programming in Scratch and Python	448-452
Methodology of Teaching and Learning Antenna Theory at Port Said University	453-457
Beyond 2030 Challenges of Engineering Education in an Information Systems Driven World - an Extraction based on Research Topics	458-466
The Impact of Culture on Acceptance of E-Learning: A Palestinian Case Study Using Structural Equation Model	467-472
Work Placement in Higher Education – Bridging the Gap between Theory and Practice	473–477
Adoption of Engineering Education Interventions From a Student Perspective	478-486
Systems Engineering Based Effective Approach for Executing Senior Projects for Engineering Students	487-490
Engaging Part-Time Students in Software Security by Inductive Learning	491-499
Gamification and Communication: an Applied Experience in a Professional Competencies Development Workshop	500-504
The i-Semester Experience: Undergraduate Challenge-Based Learning within the Automotive Industry	505-509
Using Brain Computer Interaction in Programming Problem Solving	510–518
Real-Time Distance Courses to Improve Satisfaction and Competence - A Case Study on the Performance of Students Observing their Grades.	519–525
Research-Based Approach to Undergraduate Chemical Engineering Education	526-534
Analyzing Cybersecurity Job Market Needs in Morocco by Mining Job Ads	535-543
Use of an Offline Video Repository as a Tool to Improve Students' Performance in Engineering Courses versus Real-Time Long Distance Courses	544–551
First-year Engineering Students Engagement by Hands-on Experience with Star Wars Robotics	552-556
Detailed Comparison of Instructor and Student-based Assessment in Project Based Learning	557-560
Development of Universal Research Advising for Engineering Discipline	561-565
Narrative Based Motivation For Engineering Students	566-570
Inquiry-Based Learning and Trialogical Knowledge-Creation Approach in Smart Schoolhouse Supported by IoT Devices	571–575
The e-LIVES Project: e-Engineering Where and When Students Need	576–579
The "Bachelor Project": Project Based Computer Science Education	580-587
Study Centre for IT Foundations at Tallinn University of Technology – Introducing Computer Science Basics to First Year Students	588-592
Experiences with a New Digitalized Concept for Teaching Control Theory as Minor Subject at a University of Applied Science	593-600
Teaching Java and Object Oriented Programming by Using Children Board Games	601-606
Influence of Student Diversity on Educational Trajectories in Engineering High-Failure Rate Courses that Lead to Late Dropout	607–616
Student Engagement Outside the Classroom: Analysis of a Challenge-Based Learning Strategy in Biotechnology Engineering	617–621
Transdisciplinary Learning Community: A Model to Enhance Collaboration between Higher Education Institutions and Society	622–627
Knowledge Generation in Higher Education Institutions	628–633
Koding4Kinder: Teaching Computational Thinking to Pupils Using a Combination of Programming and Electronics Platforms	634–638
Learning Computer Vision using a Humanoid Robot	639–645
MOOC Lab, a Massive Online Laboratory with Real Time Access	646-652
Collaborative Learning Outcomes for Creation of Industry-Oriented Curricular: a Case Study of ERASMUS+ Project Physics	653–660
Student Engagement in Cross-Domain Innovation Development and Its Impact on Learning Outcomes and Career Development in Electrical Engineering	661–668
Expanding the Concept of Learning Spaces for Industrial Engineering Education	669–678
Bilingual Ontology-Based Automatic Question Generation	679–684
The Effect of Computer Self-Efficacy on Entrepreneurial Aspirations of Students	685–688
Automated Assessment in Learning and Teaching Programming Languages using Virtual Learning Environment	689–697
Promoting and Implementing Digital STEM Education at Secondary Schools in Africa	698–705
An Inter-Institutional and Inter-Disciplinary Collaborative Learning to in-silico Motif Discovery in Molecular Sequences	706–710
Pedagogical Approaches to 21st Century Learning: A Model to Prepare Learners for 21st Century Competencies and Skills in Engineering	711–717
Building a Remote Laboratory for Advanced Experiments in Transmission Line Theory	718-721

Title (very long titles may be truncated)	Page range
Work in Progress: Enabling Learning Environments for Underprepared Engineering Students: Blending Game-Based and Project-Oriented Methodologies	722–726
A Framework for Constructing and Assessing Knowledge Management Systems for Engineering Institutes	727–737
Emotional Intelligence as a Success Indicator for Implementing Liberal Arts in Morocco	738–743
Developing the Next Generation Cluster of Computers Remote Laboratory	744–748
PasOnto: Ontology for Learning Pascal Programming Language	749–754
Understanding the Foundations of Electromagnetic Field Theory with Computer Software	755-760
GOAL: Generating Learning Opportunities in Logistics	761–769
The Use of Technology to Support Learning at Western Region Colleges, UAE	770–774
The International Chair - Concept and Benefits of a New Interdisciplinary Faculty Position	775–780
Deeper Theoretical Understanding by Means of Practical Experience in Electric and Electronic Circuits for Freshmen	781–786
A Low-Cost Autonomous Attention Assessment System for Robot Intervention with Autistic Children	787–792
Actions to Promote Diversity in Engineering Studies: a Case Study in a Computer Science Degree	793–800
Use of a Physical Water Pipe Network Competition in Applied Civil Engineering Students' Learning	801-805
Faculty Perception of Engineering Student Cheating and Effective Measures to Curb It	806-810
Technology-Based Communication in the Business Company	811–818
Innovative Elements for a Balanced and Successful Study and Work Program in Part-time Engineering Education	819-822
Enhancing Electric Energy Systems Final Project through Real Engineering Design Problems	823-826
Moodle Mobile Plugin for Problem- Based Learning (PBL) in Engineering Education	827-835
Project Based Learning Methodology to Improve Electrical Efficiency in Road Lighting	836-840
Discovering Students' Engagement Behaviors in Confidence-based Assessment	841-846
Standardization Guide to Develop Collaborative Massive Open Courses for Engineering Teaching in DIEGO Project	847-852
Pyweekend: Not Your Typical Hackathon	853-858
Course Experience Evaluation using Importance-Performance Analysis	859-862
T{h}inker for Engaging Learning Experience in Computational Thinking and Programming	863-866
Introductory Programming Using Non-Textual Modalities - An Empirical Study on Skill Assessment Using Rainfall Problem	867-871
Conceptual Framework for Developing Cyber Security Serious Games	872-881
New Open Educational Resources Framed in the Microelectronics Cloud Alliances Project: Strengthen the Collaboration between the Labor Market and Higher	882-891
Critical Incidents for Technology Enhanced Learning in Vocational Education and Training	892-899
Sustaining or Disruptive: Future of MOOC Innovation in Tertiary Education Still Up for Grabs	900–909
Teaching Modern C++ with Flipped Classroom and Enjoyable IoT Hardware	910–919
Structuring Academic Education in Makerspaces: Consolidated Findings from the Field	920–927
Team and Collaborative Work of the Students within Subject on Master of Science Study	928–930
Alternative Approach to Teach Probability and Statistics for College Engineering Students	931–936
Automatic Sign Language Translation to Improve Communication	937–942
Evaluating the Impact of Personalized Content Recommendations on Informal Learning from Wikipedia	943–952
Barriers and Identified Solutions to the Integration of Digital Technologies in the Classroom: A Case Study of Teachers in Nigeria	953–958
LearnIt: A Serious Game to Support Study Methods in Engineering Education	959–967
Holographic Application of Endemic Origami Animals from the Galápagos Islands that Self-Folds	968–976
Teaching Emerging DDoS Attacks on Firewalls: A Case Study of the BlackNurse Attack	977–985
Applying Outcomes-Based Learning in Civil Engineering Education	986–989
New Development and Evaluation Model for Self-Regulated Smart Learning Environment in Higher Education	990–994
Impact of Visuospatial Abilities on Perceived Enjoyment of Students toward an AR-Simulation System in Physics Course	995–998
Research and Categorization of Conceptual Difficulties in Electricity's Concepts and Basic Laws	999–1006
Evaluating Role Playing Efficiency to Teach Requirements Engineering	1007–1010
Megrez: MOOC-Oriented EEG-Based Arousal of Brain Detection and Adjustment Scheme	1011–1016
Benefits and Challenges of Distributed Student Activities in Online Education Settings: Cross-University Collaborations on a Pan-European Level	1017–1021
Creative Entrepreneurship - a Proposal to 2030's Education	1022–1029
Current Status and Perspectives of Debugging in the K12 Classroom: A Qualitative Study	1030–1038
"How to Become an Entrepreneur?" Fostering Entrepreneurial Thinking of Engineers	1039–1046
Teaching an Oscilloscope through Progressive Onboarding in an Augmented Reality Based Virtual Laboratory	1047–1054
Pair Programming as a Didactical Approach in Higher Education and its Evaluation	1055–1062
Coopetition: Industrial Interplay to Foster Innovative Entrepreneurship in Energy Engineering Education	1063-1068
A model to Support Outside Classroom Learning	1069-1078
I ne Effects of Multi-Sensory Augmented Reality on Students' Motivation in English Language Learning	1079-1086

Title (very long titles may be truncated)	Page range
The Influence of Interactive Art of Visual Music on the Creativity of Science and Engineering Students	1087–1092
Engaging Control Systems Students with a Pneumatic Levitator Project	1093–1099
Learning Agile with Intelligent Conversational Agents	1100–1107
From Heterogeneous Activities to Unified Analytics Dashboards	1108–1113
A Proposal of Quality Assessment of OER Based on Emergent Technology	1114–1119
Motivation of Computer Science Students at Universities Organized around Small Groups	1120–1127
360 Degree Virtual Tour for Educational Purposes: An Exploratory Study on the Design Elements	
Work in Progress: Improving Online Higher Education with Virtual and Remote Labs	1136–1139
Smart Education in the Context of Industry 4.0	1140–1145
MOSCEPA(Adaptive Pedagogocal Scripting Model): Towards a New Adaptive Model of Educational Scriptwriting for LMS	1146–1151
Student Engagement by Employing Student Peer Reviews with Criteria-Based Assessment	1152–1157
Organizational and Individual Factors for Training of the Manufacturing Workforce in Digitalization	1158–1166
MoocRec: Learning Styles-Oriented MOOCs Recommender and Search Engine	1167–1172
Exploring Computational Thinking Skills in 3D Printing: A Data Analysis of an Online Makerspace	1173–1179
Multicultural Experiences in Global Projects	1180–1189
A Case-Study of Automated Feedback Assessment	1190–1197
Market Basket Analysis of Student Attendance Records	1198–1203
A Research-Led Practice-Driven Digital Forensic Curriculum to Train Next Generation of Cyber Firefighters	1204–1211
Media Competence: Enabling for Digitization	1212-1215
Engage Your Students via Physical Computing!	1216-1223
A Calculus Project to Support Students that Enter Engineering Courses	1224–1227
Diversity and Inclusion: Buzzword or Real Value?	1228–1236
A Study on the Support for Women in Engineering Courses	1237-1240
K-12 School/Industry Partnership for Modelling and Simulation	1241-1249
Teaching Writing and Reading to Children with Autism	1250–1254
Information Retrieval Model for Open Educational Resources	1255–1261
Perception of Students Regarding an Online Remediation Course	1262-1266
Optimization of Quality Assessment and Evaluation Approach for Engineering Program Accreditation	1267–1274
Investigating the Data Science Skill Gap: An Empirical Analysis	1275–1284
A Holistic Approach to Assess Learning Outcome Attainment Levels for Engineering Programs	1285–1293
To Be or Not To Be, That is the Recursive Question.	1294–1299
On the Development of Laboratory Projects in Modern Engineering Education	1300–1307
On the Use of Hardware-in-the-Loop for Teaching Automation Engineering	1308–1315
FireEscape: a Gamified Coordinative Approach to Multiplayer Fire-Safety Training	1316–1323
Finding Learning and Teaching Content inside HPI School Cloud (Schul-Cloud)	1324–1330
Virtual Reality Models for Promoting Learners Engagement in Construction Studies	1331–1335
Teaching Methods for Simulation Games: The Example of Learning Business Process Change	1336–1344
Work in Progress: QUASS — A Dynamic Knowledge Sharing System	1345–1348
A Knowledge Based System for Automated Assessment of Short Structured Questions	1349–1352
Thermal Engine using Nitinol Wire	1353–1358
Work in Progress: Use of Interactive Simulations in the Active Learning Model in Physics Education for Engineering Students at a College in Oman	1359–1362
Innovative InterLabs System for Smart Learning Analytics in Engineering Education	1363–1369
Machine Learning-based Predictive Analytics of Student Academic Performance in STEM Education	1370–1376
Work in Progress: Redefining Home through an Interprofessional Collaborative Research Experience	1377–1379
Increasing Engagement in a Network Security Management Course through Gamification	1380–1383
Work in Progress: Using Simulation as an Experiential Learning Tool for Enhancing Students Learning in Environmental Engineering	1384–1385
Business Model Transformation Initiated by the Digital Transformation: A Review of Learning Concepts	1386–1392
Work in Progress: Optimizing Student Engagement During Small Group Activities in Lecture Settings	1393–1396
Work in Progress: Curricular STEMification, In-Service Teacher Education, and Course Development in a Semi-Periphery Country: An American and Chinese	1397–1399
IoT – a Solution for Educational Management Challenges	1400-1406
QMSFC: A System for Encouraging the Active Participation of Students in Flipped Classroom	1407–1410
Work in Progress: Supersensory Box: Increase your Abilities	1411–1414
Implementation of an Arduino Remote Laboratory with Raspberry Pi	1415–1418
Smart Technologies. Application for International Cooperation in Taxation.	1419-1424

Title (very long titles may be truncated)	Page range
Assessing the Reliability of Automated Knowledge Control Results	1425–1428
Can Instructors Use Social Media to Enhance Learning in a Smart Course Room and Foster a Culture of Academic Integrity?	1429–1432
Work in Progress: The Intersection of two Underrepresented Groups in Engineering in Brazil	1433–1435
Game Learning Analytics for Educators	1436–1442
Engineering Solutions on Multimodal Profiling Tool for Digital Jobs Analysis and Matching of Requirements Competences Framework	1443–1448
Project Based Learning: Predicting Bitcoin Prices using Deep Learning	1449–1454
Internet of Energy – a Solution for Energy Management Challenges	1455–1461
Work in Progress: Improving Learning Performance using Programming Methodology	1462-1466
Moods in MOOCs: Analyzing Emotions in the Content of Online Courses with edX-CAS	1467–1474
An Educational IoT-based Indoor Environment Monitoring System	1475–1479
What Can You Do with Educational Technology that is Getting More Human?	1480–1487
Guidelines for Teaching an Introductory Course on the Internet of Things	1488–1492
Technology to Empower Relationships, Interactions and Emotions in the Classroom	1493–1498
Do MOOCs Sustain the UNESCO's Quality Education Goal?	1499–1503
g9toengineering: A Virtual Community of Practice in Knowledge Creation	1504–1511
Student Experiences with Knowledge Management	1512-1517
M2M Learning Environment for Electric Applications	1518–1522
Language Expression Technicality in Technical Report Writing for Technology Major Non-native Students	1523-1526
Awareness and Cooperation of Relevant Stakeholders in Developing Competences Related to Green Tourism	1527-1533
Automation, Technology Transfer and Managerial Practices for Organizational Growth of SMEs. A Smart Curriculum for Competitiveness	1534–1541
Challenges in the Transition from Engineering to Management and Suggestions on ow Education Might Assist in Overcoming Them	1542-1546
Educating the New Generation of Engineer Managers to Stay Relevant in the 21st Century Workforce	1547-1551
Crowdsourcing-Based Learning: the Effective Smart Pedagogy for STEM Education	1552-1558
A System Engineering Approach in Orienting Traditional Engineering towards Modern Engineering	1559-1567