PROCEEDINGS OF SPIE

Modeling, Systems Engineering, and Project Management for Astronomy VIII

George Z. Angeli Philippe Dierickx Editors

10–12 June 2018 Austin, Texas, United States

Sponsored by SPIE

Cosponsored by

4D Technology (United States) • Andor Technology, Ltd. (United Kingdom) • Astronomical Consultants & Equipment, Inc. (United States) • Giant Magellan Telescope (Chile) • GPixel, Inc. (China) • Harris Corporation (United States) • Materion Corporation (United States) • Optimax Systems, Inc. (United States) • Princeton Infrared Technologies (United States) • Symétrie (France) • Teledyne Technologies, Inc. (United States) • Thirty Meter Telescope (United States)

Cooperating Organizations

European Space Organisation • National Radio Astronomy Observatory (United States) • Science & Technology Facilities Council (United Kingdom) • Canadian Astronomical Society (Canada) • Canadian Space Association ASC (Canada) • Royal Astronomical Society (United Kingdom) • Association of Universities for Research in Astronomy (United States) • American Astronomical Society (United States) • Australian Astronomical Observatory (Australia) • European Astronomical Society (Switzerland)

Published by SPIE

Volume 10705

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in Modeling, Systems Engineering, and Project Management for Astronomy VIII, edited by George Z. Angeli, Philippe Dierickx, Proceedings of SPIE Vol. 10705 (SPIE, Bellingham, WA, 2018) Seven-digit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510619630

ISBN: 9781510619647 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)- Fax +1 360 647 1445 SPIE.org

Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/\$18.00.

Printed in the United States of America Vm7 i ffUb 5 cpc WJUhY oz +bWzi bXYf Wb by Zfca CD-9.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

ix xiii	Authors Conference Committee
SESSION 1	SYSTEM PERFORMANCE MODELING I
10705 02	GMT aerothermal modeling validation through site measurements [10705-2]
10705 03	Dome seeing sensitivity analysis for LSST [10705-3]
10705 04	On the precision of aero-thermal simulations for TMT: revisited [10705-4]
10705 05	Giant Magellan Telescope site and enclosure computational fluid dynamics modeling and analysis [10705-1]
SESSION 2	PROJECT MANAGEMENT I
10705 06	Understanding the risk of unattended nighttime operations at W. M. Keck Observatory [10705-7]
10705 07	A novel approach to the development of the HARMONI integral field spectrograph using structured systems thinking [10705-6]
10705 08	Risk management system at Gemini Observatory [10705-8]
10705 09	How to talk so your engineer will listen, how to listen so your scientist will talk: the human side o astronomical instrument development [10705-5]
SESSION 3	ASSEMBLY, INTEGRATION, AND TEST
10705 0A	Delivery and integration of MEGARA at GTC: the process of going from laboratory to the telescope [10705-13]
10705 0C	ESO ELT system requirements verification [10705-12]
10705 0D	Integration and verification testing of the LSST camera [10705-10]
10705 0E	LSST camera-integration and test subsystem: planning and status [10705-11]

10705 OF	Precise alignment method for MAORY [10705-14]
SESSION 4	SYSTEMS ENGINEERING
10705 OH	Maunakea spectroscopic explorer (MSE): implementing systems engineering methodology for the development of a new facility [10705-19]
10705 01	Systems engineering for the Giant Magellan Telescope [10705-17]
10705 OJ	Cherenkov Telescope Array (CTA): challenges in systems engineering and project management (Invited Paper) [10705-15]
10705 OK	A comparison of systems engineering challenges and practices between space and ground based astronomical projects (Invited Paper) [10705-16]
SESSION 5	PROJECT MANAGEMENT II
10705 OL	The technology development programme at ESO: challenges for industry [10705-22]
10705 OM	Deriving generic telescope use cases for the Cherenkov Telescope Array [10705-59]
SESSION 6	MODELING AS A DRIVER OF OBSERVATORY DESIGN I: JOINT SESSION WITH CONFERENCES 10700 AND 10705
10705 OP	Monitoring LSST system performance during construction [10705-25]
10705 OQ	Integrated modeling under uncertainty for the James Webb Space Telescope [10705-24]
SESSION 7	MODELING AS A DRIVER OF OBSERVATORY DESIGN II: JOINT SESSION WITH CONFERENCES 10700 AND 10705
10705 OR	Computational fluid dynamics modeling of GMT [10705-28]
10705 OT	Optical performance prediction of the Thirty Meter Telescope after initial alignment using optical modeling [10705-27]
SESSION 8	MODEL BASED SYSTEMS ENGINEERING
10705 OU	V and V planning and execution in an integrated model-based engineering environment using MagicDraw, Syndeia, and Jira [10705-30]

10705 OV	Verifying Interfaces and generating interface control documents for the alignment and phasing subsystem of the Thirty Meter Telescope from a system model in SysML [10705-29]
10705 OW	The OpenSE Cookbook: a practical, recipe based collection of patterns, procedures, and best practices for executable systems engineering for the Thirty Meter Telescope [10705-31]
10705 0X	The multi-object spectroscopy (MOS) observations automatized production line [10705-33]
SESSION 9	SYSTEM PERFORMANCE MODELING II
10705 OZ	Control modeling of the fast-steering secondary mirror of GMT [10705-37]
10705 12	Performance analysis tools and results for GMT primary mirror segment active support system [10705-35]
10705 13	ELT dome and telescope: performance analysis overview [10705-38]
SESSION 10	SYSTEM PERFORMANCE MODELING III
10705 14	ELT-HIRES, the high resolution spectrograph for the ELT, end-to-end simulator: design approach and results [10705-43]
10705 15	STOP modeling in support of a 1-meter aperture balloon based telescope [10705-42]
10705 16	Validating the phase diversity approach for sensing NCPA in SHARK-NIR, the second-generation high-contrast imager for the Large Binocular Telescope [10705-40]
	POSTER SESSION
10705 1A	Systems engineering applied to ELT instrumentation: the GMACS case [10705-46]
10705 1B	Integrating project management and systems engineering to transition to remote operations [10705-47]
10705 1D	Non-blind deconvolution of the residual tip-tilt error of the Sunrise Solar Observatory [10705-49]
10705 1E	Radial velocity accuracy prediction of the GREGOR at night spectrograph based on simulated spectra [10705-50]
10705 1F	The integration and verification of the power and mechanism control unit of the VIS instrument for the Euclid space mission $[10705-52]$
10705 1G	Flexure compensation simulation tool for TMT-WFOS Spectrograph [10705-53]

10705 1J	Initial on-site measurements at potential observatory sites within the United Arab Emirates [10705-56]
10705 1K	Analysis of mode excitation on different geometries of optical fibres for astronomical spectroscopy [10705-57]
10705 1M	Giant Magellan Telescope enclosure thermal modeling and simulation [10705-60]
10705 1N	Ground layer studies for the alternate TMT site [10705-61]
10705 10	Modeling and budgeting fiber injection efficiency for the Maunakea Spectroscopic Explorer (MSE) [10705-62]
10705 1R	End-to-end simulations for COLIBRI, ground follow-up telescope for the SVOM mission [10705-65]
10705 1S	Organization, management and risk analysis of the MAORY project [10705-66]
10705 1U	Physical modeling of echelle spectrographs: the CARMENES case study [10705-68]
10705 1V	Product assurance for instrumental projects in research laboratory: galaxies, etoiles, physique instrumentation (GEPI) [10705-69]
10705 20	Project management and status update for DAG (Eastern Anatolia Observatory) the 4-meter VIS/IR optical telescope [10705-74]
10705 22	Maximising the sensitivity of next generation multi-object spectroscopy: system budget development and design optimizations for the Maunakea Spectroscopic Explorer [10705-76]
10705 23	Modeling of structural cables [10705-77]
10705 24	The 4MOST numerical instrument model: TOAD [10705-78]
10705 25	Factory acceptance testing and model refinement for the Daniel K. Inouye Solar Telescope air knife assembly [10705-79]
10705 26	WFIRST coronagraph technology requirements: status update and systems engineering approach [10705-81]
10705 28	Recent advances in stray light modeling for large telescope/observatory systems [10705-83]
10705 29	Maunakea Spectroscopic Explorer (MSE): the prime focus subsystems: requirements and interfaces [10705-84]
10705 2A	Key aspects in designing for electromagnetic compatibility for astronomical instrumentation [10705-85]
10705 2C	Coordination in building an observatory: a case study of Eastern Anatolian Observatory (DAG) [10705-88]

10705 2E **ELT Telescope: control system dynamic simulations** [10705-90]

10705 2F At the dawn of a systems engineering process [10705-91]