Lead-Acid Batteries and Capacitors, New Designs, and New Applications

Editors:

K. Bullock Coolohm Incorporated Blue Bell, Pennsylvania, USA

P. T. Moseley Advanced Lead-Acid Battery Consortium Durham, North Carolina, USA

B. Y. Liaw University of Hawaii at Manoa Honolulu, Hawaii, USA

Sponsoring Division:

f Battery

Published by The Electrochemical Society

65 South Main Street, Building D Pennington, NJ 08534-2839, USA tel 609 737 1902 fax 609 737 2743 www.electrochem.org

Pesitransactions TM

Vol. 41, No. 13

Copyright 2012 by The Electrochemical Society. All rights reserved.

This book has been registered with Copyright Clearance Center. For further information, please contact the Copyright Clearance Center, Salem, Massachusetts.

Published by:

The Electrochemical Society 65 South Main Street Pennington, New Jersey 08534-2839, USA

> Telephone 609.737.1902 Fax 609.737.2743 e-mail: ecs@electrochem.org Web: www.electrochem.org

ISSN 1938-6737 (online) ISSN 1938-5862 (print) ISSN 2151-2051 (cd-rom)

ISBN 978-1-56677-945-6(PDF) ISBN 978-1-60768-303-2 (Softcover)

Printed in the United States of America.

ECS Transactions, Volume 41, Issue 13 Lead-Acid Batteries and Capacitors, New Designs, and New Applications

Table of Contents

Preface	iii
Chapter 1 Plenary Lecture	
Partial State-of-Charge Duty: A Challenge but Not a Show-Stopper for Lead-Acid Batteries! <i>P. T. Moseley and D. A. J. Rand</i>	3
Chapter 2 New Lead-Acid Battery Designs in HEVs	
Mild HEV Performance at Micro Hybrid Cost - A Low Voltage Lead-Acid Approach A. Cooper, G. Morris, M. Neumann, and M. Kellaway	19
 Simulation of SLI Lead-Acid Batteries for SoC, Aging and Cranking Capability Prediction in Automotive Applications G. Pilatowicz, H. Budde-Meiwes, D. Schulte, J. Kowal, D. Sauer, Y. Zhang, N. Tong, M. Salman, D. Gonzales, and J. Alden 	31
Chapter 3 Lead-Carbon Negative Electrode in Lead-Acid Batteries	
The Beneficial Role of Carbon in the Negative Plate of Advanced Lead-Carbon Batteries <i>B. Monahov</i>	45
Lead-Carbon Electrode with Inhibitor of PbSO ₄ Recrystallization in Lead-Acid Batteries Operating on HRPSoC Duty <i>D. Pavlov and P. Nikolov</i>	71
Chapter 4 Carbon Corrosion Mechanisms in Lead-Acid Cells and Fuel Cells	
Carbon Corrosion Mechanisms in Batteries during High-Rate, Partial State-of-Charge Cycling <i>K. R. Bullock</i>	85
ν	

Chapter 5 Lead Batteries with Hybrid Electrodes

A 12 V Substrate-Integrated PbO₂-Activated Carbon Asymmetric Hybrid Ultracapacitor 101 with Silica-Gel-Based Inorganic-Polymer Electrolyte *A. Banerjee, M. K. Ravikumar, A. Jalajakshi, S. A. Gaffoor, and A. K. Shukla*

Chapter 6 Lead-Acid Battery Grid Performance

Electrochemical Principles as Applied to Grid Corrosion in Lead-Acid Batteries S. S. Misra	117
Chapter 7 Poster Session	
Lead Acid-NiMH Hybrid Battery System Using Gel Electrolyte G. Weng, C. Li, and K. Chan	133

vi

Author Index

145