Asia-Pacific Conference on Semiconducting Silicides Science and Technology Towards Sustainable Optoelectronics

(APAC-SILICIDE 2010)

Physics Procedia Volume 11

Tsukuba, Japan 24 – 26 July 2010

Editors:

Y. Maeda

ISBN: 978-1-62748-712-2

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© by Elsevier B.V. All rights reserved.

Printed by Curran Associates, Inc. (2014)

For permission requests, please contact Elsevier B.V. at the address below.

Elsevier B.V. Radarweg 29 Amsterdam 1043 NX The Netherlands

Phone: +31 20 485 3911 Fax: +31 20 485 2457

http://www.elsevierpublishingsolutions.com/contact.asp

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: \$45,758,0400

Phone: 845-758-0400 Fax: 845-758-2634

Email: curran@proceedings.com Web: www.proceedings.com

Preface

Available online at www.sciencedirect.com

Physics Procedia

Physics Procedia 11 (2011) 1-6

www.elsevier.com/locate/procedia

Contents

Y. Maeda ·····
Organizers page ······ 8
Al- and Cu-doped BaSi ₂ films on Si(111) substrate by molecular beam epitaxy and evaluation o
depth profiles of Al and Cu atoms
M. Ajmal Khan, M. Takeishi, Y. Matsumoto, T. Saito and T. Suemasu ·····11
Magnetoresistance characteristics of Fe ₃ Si/CaF ₂ /Fe ₃ Si heterostructures grown on Si(111) by
molecular beam epitaxy grown on Si(111) by molecular beam epitaxy
K. Harada, K. S. Makabe, H. Akinaga and T. Suemasu15
Reduction of carrier concentrations of β -FeSi $_2$ films by atomic hydrogen-assisted molecular bean epitaxy
K. Akutsu, M. Suzuno, H. Kawakami and T. Suemasu ······19
Molecular beam epitaxy of β -FeSi $_2$ films on Si(111) substrates and its influence on minority-carrie
diffusion length of Si measured by EBIC
H. Kawakami, M. Suzuno, K. Akutsu, J. Chen, Y. Fuxing, T. Sekiguchi and T. Sueması
Growth of Al-doped p-type BaSi ₂ films by molecular beam epitaxy and the effect o
high-temperature annealing on their electrical properties
M. Takeishi, Y. Matsumoto, R. Sasaki, T. Saito and T. Suemasu27
Formation of poly-Si layers on AZO/SiO ₂ substrates and anti-reflection coating with AZO films fo
BaSi ₂ solar cells
A. Okada, R. Sasaki, Y. Matsumoto, M. Takeisi, T. Saito, K. Toh, N. Usami and
T. Suemasu31

$Influence \ of \ CrSi_2 \ nanocrystals \ on \ the \ electrical \ properties \ of \ Au/Si-p/CrSi_2 \ NCs/Si(111)-n$
mesa-diodes
N. G. Galkin, L. Dózsa, E. A. Chusovitin, S. A. Dotsenko, B. Pécz and
L. Dobos35
Ultra high vacuum growth of $CrSi_2$ and β -FeSi $_2$ nanoislands and Si top layers on the plasma
modified monocrystalline silicon surfaces
N. G. Galkin, V. M. Astashynski, E. A. Chusovitin, K. N. Galkin, T. A. Dergacheva,
A. M. Kuzmitski and E. A. Kostyukevich39
Formation of nanocrystalline CrSi ₂ layers in Si by ion implantation and pulsed annealing
R.I. Batalov, R.M. Bayazitov, V.F. Valeev, N.G. Galkin, D.L. Goroshko, K.N. Galkin,
E.A. Chusovitin, P.I. Gaiduk, G.D. Ivlev and E.I. Gatskevich ······ 43
The model of the magnesium silicide phase $(2/3 \sqrt{3} \times 2/3 \sqrt{3})$ -R30° on Si(111)
K. N. Galkin, M. Kumar, S.M. Shivaprasad and N. G. Galkin
K. N. Gaikiii, W. Kumai, S.W. Sinvapiasad and W. G. Gaikii
AES and EELS study of desorption of magnesium silicide films on Si(111)
K. N. Galkin, M. Kumar, S.M. Shivaprasad and N. G. Galkin51
Silicon overgrowth atop low-dimensional Mg_2Si on $Si(111)$: structure, optical and thermoelectrical properties
K. N. Galkin and N. G. Galkin ·····55
Chemical trends of the band gaps in semiconducting silicon clathrates
Y. Imai and A. Watanabe ·····59
Valence electronic structure of β-FeSi ₂ single crystal investigated by photoelectron spectroscopy
using synchrotron radiation
K. Ogawa, M. Sasaki, A. Ohnishi, M. Kitaura, H. Fujimoto, J. Azuma, K. Takahashi and
M. Kamada ······63
Surface analysis of single-crystalline β-FeSi ₂
Y. Yamada, W. Mao, H. Asaoka, H. Yamamoto, F. Esaka, H. Udono and
T. Tsuru

Antireflection coatings with FeSi ₂ layer:Application to spectrally selective infrared emitter
Y. Kaneko, M. Suzuki, K. Nakajima, K. Kimura, K. Akiyama, K. Harutsugu,
H. Wakabayashi and T. Makino71
Fabrication and characterization of novel Fe(Os)Si ₂ semiconductor
Y. Gao, H. W. Liu, Y. Lin and G. Shao ······75
Iron silicide photonic crystals and light propagation property
Y. Maeda79
Determination of silicon vacancy in ion-beam synthesized β-FeSi ₂
Y. Maeda, T. Ichikawa, T. Jonishi and M. Narumi83
1. Maeda, 1. Ichikawa, 1. Johishi and M. Naruhi
Transformation from $\epsilon\text{-FeSi}$ to $\beta\text{-FeSi}_2$ in RF-Sputtered FeSi_x Films
N. Kawabata and K. Nakamura87
Influence of Si(111) $\sqrt{3}$ x $\sqrt{3}$ -R30°-Sb surface phase on the formation and conductance of
low-dimensional magnesium silicide layer on Si(111) substrate
D. L. Goroshko, K. N. Galkin and N. G. Galkin91
D. L. Golosiko, K. N. Gaikiii aliu N. G. Gaikiii
Growth, optical and electrical properties of Ca_2Si film grown on $Si(111)$ and $Mg_2Si/Si(111)$ substrates
S.A. Dotsenko, D.V. Fomin, K.N. Galkin, D.L. Goroshko and N.G. Galkin95
Study on the electronic structure and optical properties of the environmentally friendly
semiconductor Ca ₃ Si ₄
R. Gao and Q. Xie99
Thermoelectric properties of sputtered iron-silicide
S.Nakamura, Y. Marumoto, M. Mimura, D. Sugiyama, T. Kittaka, K. Kametomo, N. Yasui
and K. Takarabe
Electrical properties of Ca ₂ Si sintered compact synthesized by spark plasma sintering
C. Wen, T. Nonomura, A. Kato, Y. Kenichi, H. Udono, K. Isobe, M. Otake, Y. Kubota,
T. Nakamura, Y. Hayakawa and H. Tatsuoka ······106

Thermoelectric properties of group VI metal silicide semiconductors
T. Nonomura, C. Wen, A. Kato, K. Isobe, Y. Kubota, T. Nakamura, M. Yamashita,
Y. Hayakawa and H. Tatsuoka ·····110
Sr_2SiO_4 flower-like nanostructures grown by thermal oxidation of $SrSi_2$ with Ga droplets
Q. Yang, M. Tanaka, S. Liang, K. Ogino, T. Yasuda and H. Tatsuoka ······114
Effects of annealing temperature on the structure and surface feature of BaSi ₂ films grown or
Si(111) substrates
Z. Yang, Z. Hao and Q. Xie ·····118
Thermal Process of Iron Silicides prepared by Magnetron sputtering
J. Zhang, Q. Xie, Y. Liang, W. Zeng, Q. Xiao, Q. Chen, D. Ma, Y. Wang, K. Yamada and
J. Luo122
Atomic Diffusion in the interface of Fe/Si prepared by Magnetron sputtering
J. Zhang, Q. Xie, Y. Liang, W. Zeng, Q. Xiao, Q. Chen, V. Borjanović, M. Jakšić,
M. Karlusic, B. Gržeta, K. Yamada and J. Luo ······126
Influence of sputtering power on the structural and morphological properties of semiconducting Mg ₂ Si films
Q. Xiao, Q. Xie, Z. Yu and K. Zhao ·····130
First-principles calculations on the electronic structure and optical properties of Mg_2Si epitaxial on Si (111)
Q. Chen and Q. Xie134
Preparation and electrical properties of Mn silicides by reaction of MnCl ₂ and Si powder
J. Hu, C. Zhang, W. Li, S. Guan and H. Tatsuoka ······138
On the role of induced impurity potential of β -FeSi ₂
S. Kondo M. Hasaka and T. Morimura ······142
Ab-initio calculation of (101) and (100) surface for β-FeSi ₂
S. Tanimoto and T. Nagano ·····146

Surface characterization of homoepitaxial β -FeSi $_2$ film on β -FeSi $_2$ (111) substrate by X-ray
photoelectron and absorption spectroscopy
F. Esaka, H. Yamamoto, H. Udono, N. Matsubayashi, K. Yamaguchi, S. Shamoto,
M. Magara and T. Kimura ······150
Current-induced magnetization switching in Fe ₃ Si/FeSi ₂ superlattices
S. Hirakawa, K. Sakai, T. Sonoda, K. Takeda and T. Yoshitake ······154
The effect of crystalline structure on photoluminescence of the β -FeSi $_2$ film prepared by pulsed laser
deposition using two types of target
M. Zakir Hossain, H. Katsumata and S. Uekusa ·····158
Behavior of nickel silicide in multi-crystalline silicon for solar cells
T. Tachibana, T. Sameshima, K. Arafune, Y. Ohshita and A. Ogura ······163
Phonon properties of β -FeSi ₂ and photoluminescence
Y. Maeda, T. Nakajima, B. Matsukura, T. Ikeda and Y. Hiraiwa ······167
Preparation of Schottky contacts on n-type Mg ₂ Si single crystalline substrate
K.Sekino, M.Midonoya, H.Udono and Y.Yamada ······171
Surface structures of β -FeSi $_2$ formed by heat-treatment in ultra-high vacuum and their influence on homoepitaxial growth
S. Matsumura, K. Ochiai, H. Udono, F. Esaka, K. Yamaguchi, H. Yamamoto and K. Houjo ······174
Effect of temperature modulation during temperature gradient solution growth of β-FeSi ₂
Y. Ujiie, K. Nakamori, S. Mashiko, H. Udono and T. Nagata ······177
Temperature dependence of direct transition energies in β -FeSi ₂ epitaxial films on Si(111) substrate
K. Noda, Y. Terai, K. Yoneda and Y. Fujiwara ·····181
Photoluminescence and photoreflectance studies in Si/β-FeSi ₂ /Si(001) double heterostructure
K. Yoneda, Y. Terai, K. Noda, N. Miura and Y. Fujiwara ·····185

$Fabrication \ of \ BaSi_2 \ films \ on \ transparent \ CaF_2(111) \ substrates \ by \ molecular \ beam \ epitaxy \ for \ optical$
characterization
K. Toh, T. Saito, M. Ajmal Khan, A. Okada, N. Usami and T. Suemasu ······189
Toward the epitaxial growth of ferromagnetic γ -Fe ₄ N on Si(100) substrate by molecular beam epitaxy
G. H. Lee, K. Ito and T. Suemasu ————————————————————————————————————
Metal induced crystallization of amorphous silicon for photovoltaic solar cells
D. Van Gestel, I. Gordon and J. Poortmans ······196
Magnetooptical properties of iron based Heusler alloy epitaxial films on Ge(111)
Y. Maeda, T. Ikeda, T. Ichikawa, T. Nakajima, B. Matsukura, T. Sadoh and
M. Miyao ······200