The Electrochemical Society

Rechargeable Lithium and Lithium Ion Batteries

at the 214th ECS Meeting

ECS Transactions Volume 16 No.29

October 12-17, 2008 Honolulu, Hawaii, USA

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 www.proceedings.com

ISBN: 978-1-61567-303-2

Some format issues inherent in the e-media version may also appear in this print version.

Printed from e-media with permission by:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571

Some format issues inherent in the e-media version may also appear in this print version.

Copyright© (422;) by The Electrochemical Society All rights reserved.

Printed by Curran Associates, Inc. (2010)

For permission requests, please contact The Electrochemical Society at the address below.

The Electrochemical Society 65 South Main Street Pennington, New Jersey 08534-2839

Phone: (609) 737-1902 Fax: (609) 737-2743

www.electrochem.org

Additional copies of this publication are available from:

Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: curran@proceedings.com Web: www.proceedings.com

ECS Transactions, Volume 16, Issue 29 Rechargeable Lithium and Lithium Ion Batteries

Table of Contents

Preface

Chapter 1 Cathodes

The Effect of Al Substitution in LiNi1/3Co1/3Mn1/3O2 Cathode Materials <i>M. D. Johannes and D. Pillay</i>	3
First Principles Computations Studies: Structural and Electrochemical Behavior of Layered Cathode Materials J. J. Saavedra-Arias, R. Thomas, N. K. Karan, Y. Ishikawa and R. S. Katiyar	9
Synthesis and Electrochemical Properties of Porous Carbon Composites Coated with Manganese Oxide Nanosheets <i>Y. Kagei, S. Suzuki and M. Miyayama</i>	19
 Characterization and Electrochemical Properties of Li2Cu0.5Ni0.4M0.1O2 Lithium-ion Battery Cathodes C. T. Love, M. D. Johannes, A. M. Stux and K. Swider-Lyons 	27
Do You REALLY Want a High Potential Cathode ? <i>R. A. Huggins</i>	37
Microwave-Irradiated Solvothermal Synthesis of LiFePO4 Nanorods and Their Nanocomposites for Lithium Ion Batteries <i>A. Murugan, T. Muraliganth and A. Manthiram</i>	49

Chapter 2 Anodes

Electrochemical Properties of Foliated Graphite / Titanate Nanosheets Composites	59
as an Anode Material for Li-ion Secondary Batteries	
D. Watanabe, S. Suzuki and M. Miyayama	
Laminated Thin Films of Titanate Nanosheets Obtained by Electrophoretic	67
Deposition for High-Rate Capable Electrodes of Li-ion Batteries	
S. Suzuki, M. Yano and M. Miyayama	

Chapter 3 Electrolytes

Three-Step Synthetic Methodology to a New Family of Polylithium Salts for 77 Lithium-ion Batteries

A. Chakrabarti, R. Filler and B. K. Mandal

Chapter 4 Safety

Thermal Behavior of Lithium-Ion Cells by Adiabatic Calorimetry: One of the	93
Selection Criteria for All Applications of Storage	
Y. Wu, D. Brun-Buisson, S. Genies, F. Mattera and J. Merten	

Chapter 5 **Cell Performance, Modeling**

Deterioration Analysis of DC internal resistance by "Current-Rest-Method" using	107
the "Four-Electrode Cell" for LIB	
S. Yata, H. Kinoshita, H. Satake and S. Kinoshita	
Imaging and Modeling for Engineering the Li-ion Battery Electrode	121
A. M. Stux, E. Gorzkowski, D. Rowenhorst, D. Stephenson and D. R. Wheeler	

Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-ion 129 Battery Models

V. Ramadesigan, V. Boovaragavan and V. R. Subramanian

Chapter 6 **Lithium Ion Batteries Poster**

Substitution Effect for Br on the Lithium Ion Conductivity of Lithium Indium	137
Bromide	

Y. Tomita, H. Nishiyama, K. Kobayashi, Y. Kohno, Y. Maeda and K. Yamada

Li-ion Rechargeable Batteries Based on LiFePO4: A comparative Study on the 143 Nanostructured Composite Positive Electrode With Two Different Carbon Coating A. Kumar, R. Thomas, N. K. Karan, M. S. Tomar and R. S. Katiyar

Ammonia-treated Titania as an Anode Material of Lithium-ion Battery with High-rate Capability O. Tanaike, H. Kiyono, S. Shimada, M. Toyoda and T. Tsumura	151
Interpenetrating Networks Based on Poly(trimethylene Carbonate) and Poly(ethylene oxide) Blends Doped With Lithium Salts <i>P. Barbosa, L. Rodrigues, M. Silva and M. Smith</i>	157
Carbon-vanadium Nitride Composite for Electrode with High-rate Capability T. Tsumura, T. Kiyo, M. Toyoda and O. Tanaike	167
The Change of the Lithium-Sulfur Cell Components Properties by its Cycling V. Kolostnitsyn, E. Kuzmina, E. Karaseva and S. Mochalov	173
Li2S-P2S5 Based Solid State Electrolytes for Lithium Ion Battery Applications J. E. Trevey, Y. S. Jung and S. Lee	181
Polyethylene Oxide-Based Gel Membrane Electrolytes for Lithium Batteries <i>K. Luo, R. Filler and B. K. Mandal</i>	189
Electrochemical Properties of Helical Carbon Nanomaterials Formed on LiCoO2 by CVD Method Y. Uno, T. Tsujikawa and T. Hirai	197
Influence of Cathode Active Materials Obtained by a Wet-type Jet Mill on Lithium Cell Performance <i>T. Hirai, J. Takahata and T. Tsujikawa</i>	203

Author Index

209