PROCEEDINGS OF SPIE

High Contrast Metastructures IX

Connie J. Chang-Hasnain Andrei Faraon Weimin Zhou Editors

3–6 February 2020 San Francisco, California, United States

Sponsored and Published by SPIE

Volume 11290

Proceedings of SPIE 0277-786X, V. 11290

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in *High Contrast Metastructures IX*, edited by Connie J. Chang-Hasnain, Andrei Faraon, Weimin Zhou, Proceedings of SPIE Vol. 11290 (SPIE, Bellingham, WA, 2020) Seven-digit Article CID Number.

ISSN: 0277-786X ISSN: 1996-756X (electronic)

ISBN: 9781510633438 ISBN: 9781510633445 (electronic)

Published by **SPIE** P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445 SPIE.org Copyright © 2020, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/20/\$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

- v Authors
- vii Conference Committee

HARNESSING LIGHT II

11290 06 Properties of resonant photonic lattices: Bloch mode dynamics, band flips, and applications (Invited Paper) [11290-5]

NONLINEAR METASURFACES

- 11290 0C Observation of highly efficient second-harmonic generation at the nanoscale driven by bound states in the continuum [11290-10]
- 11290 0D Frequency doubling in cavity-resonator integrated grating filter [11290-11]

INTEGRATED PHOTONIC METASTRUCTURE DEVICES

- 11290 0I On-chip wavefront shaping with dielectric metasurface (Invited Paper) [11290-16]
- 11290 0J Integrated RF-photonic beamforming circuit using high-contrast grating delay-line waveguides [11290-17]
- 11290 0K Mid-wave infrared filtering in silicon subwavelength zero-contrast gratings [11290-18]

METASURFACE/METASTRUCTURE: DESIGN AND TOPOLOGICAL CONCEPT

- 11290 0N Topological local-valley interface in ordinary photonic crystal waveguide [11290-21]
- 11290 00 Large permittivity increments for efficient predictive photonic devices optimization (Invited Paper) [11290-24]

METASURFACE OPTICS AND IMAGING I

11290 0U Fundamental limitations of ultra-flat resonant dielectric metasurfaces (Invited Paper) [11290-28]

METASTRUCTURE OPTICS

11290 OZ	Metastructures consisting of cascaded high-contrast subwavelength gratings (Invited Paper) [11290-33]
	METASTRUCTURE LASERS, MODULATORS, AND DETECTORS
11290 15	Monolithic high contrast gratings as planar focusing reflectors for VCSELs [11290-38]
	TUNABLE METASURFACES I
11290 1A	Electrically tunable filter based on plasmonic phase retarder and liquid crystals [11290-43]
11290 1B	Tunable and reconfigurable high-index semiconductor meta-optics [11290-44]
	TUNABLE METASURFACES II
11290 1F	Fano-resonance based tunable all-dielectric metasurfaces [11290-48]
11290 1L	Silicon subwavelength waveguiding devices [11290-54]
11290 1M	Nanostructured trampoline microcavities for sensing and optomechanics (Invited Paper) [11290-55]
11290 10	Achieving high numerical aperture near-infrared imaging based on an ultrathin cylinder dielectric metalens [11290-57]
	POSTER SESSION
11290 1P	Genetic optimization of highly polarization-selective broadband absorber of plasmonic metamaterial [11290-59]