PROCEEDINGS OF SPIE

Solid State Lasers XXIX: Technology and Devices

W. Andrew Clarkson Ramesh K. Shori Editors

4–6 February 2020 San Francisco, California, United States

Sponsored and Published by SPIE

Volume 11259

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Author(s), "Title of Paper," in *Solid State Lasers XXIX: Technology and Devices*, edited by W. Andrew Clarkson, Ramesh K. Shori, Proceedings of SPIE Vol. 11259 (SPIE, Bellingham, WA, 2020) Seven-digit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510632813

ISBN: 9781510632820 (electronic)

Published by

SPIF

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445 SPIE.ora

Copyright © 2020, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/20/\$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

vii ix	Authors Conference Committee
SESSION 1	EYE SAFE AND MID-IR LASERS I
11259 02	1.34 µm Nd:YVO4 laser passively Q-switched by V:YAG and optimized for lidar [11259-1]
11259 05	1.7 µm diode-pumped Tm:GGAG and Tm, Ho:GGAG 2-2.1 µm laser [11259-4]
11259 06	Passively Q-switched 10 mJ Tm:YLF laser with efficient OPO conversion to mid-IR [11259-5]
11259 07	Compact 12mJ mid-IR pulsed source using an intracavity KTA OPO followed by a CSP OPA [11259-6]
SESSION 2	EYE SAFE AND MID-IR LASERS II
11259 0A	Efficiency optimization of 3-µm Q-switched lasers based on Er-doped crystalline materials [11259-9]
11259 OC	Crystal host engineering for transition metal lasers [11259-11]
11259 0D	Picosecond laser source at 3.4 microns for laser material processing of polymers [11259-12]
SESSION 3	STRUCTURED BEAMS
11259 OE	Q-switched vortex laser using a Sagnac interferometer as an output coupler [11259-13]
11259 0G	Diode-pumped Yb:CALGO laser with conical refraction output [11259-15]
11259 OH	High purity twisted light from a metasurface solid state resonator [11259-16]
SESSION 4	NOVEL LASER CONCEPTS
11259 OJ	Narrow linewidth tunable and dual wavelength compact Alexandrite laser [11259-18]

11259 OK	Nd:YLF/KGW intracavity Raman laser in DBMC configuration emitting at 1147 and 1163 nm in TEM $_{00}$ [11259-19]
11259 OL	Highly stable, high power hybrid fiber and Innoslab amplifier for narrow linewidth signals [11259-20]
SESSION 5	PULSED LASERS I
11259 0N	Scalable amplification with a high gain x energy product at room temperature using a thick slab of Yb³+:YAG [11259-22]
11259 OP	Passively Q-switched Nd:YVO ₄ laser operating at 914 nm [11259-24]
11259 0Q	Ultra-compact >100kHz Q-switched Alexandrite lasers [11259-25]
SESSION 6	PULSED LASERS II
11259 OT	Fiber-coupled high-power diode-pumped solid-state lasers for laser cleaning [11259-28]
11259 OU	A fiber/solid-state hybrid laser system for ion beam control in a particle accelerator [11259-29]
11259 OW	High average power passively Q-switched Yb:YAG micro-laser [11259-31]
11259 OX	Active Q-switch Tm:YLF based on electro-optic KLTN [11259-32]
11259 0Y	Active pulse underwater vision system [11259-33]
SESSION 7	LASER MATERIAL CHARACTERIZATION I
11259 OZ	Yb concentration influence of on thermal lensing in Yb:LuAG and Yb:YAG lasers at cryogenic temperatures: modeling and experimental study [11259-34]
11259 10	Efficient laser operation of Yb:Lu ₃ Al ₅ O ₁₂ transparent ceramics fabricated from laser ablated nanopowders [$11259-35$]
11259 11	Growth, spectroscopy and laser operation of Yb³+, Na+/Li+-codoped CNGG-type garnets promising for ultrafast lasers [11259-36]
SESSION 8	LASER MATERIAL CHARACTERIZATION II
11259 13	Recent progress in mechanically Q-switched 2.94 µm Er:YAG – promising pump source for 4-µm room temperature Fe:ZnSe lasers [11259-78]

11259 15	Time-gated measurements of fusion-class laser beam profiles [11259-39]
11259 17	Spatially resolved B-integral measurements on the NIF laser [11259-41]
11259 18	Precision diagnostic system enhancements and recommissioning for advanced laser beam characterization at the National Ignition Facility [11259-42]
11259 19	Tunable Cr^{2+} , Fe^{2+} : $Zn_{1-x}Mn_xSe$ (x = 0.05) and (x = 0.3) lasers around 4.4 μm at 78 K pumped by a 1.94 μm Tm: fiber laser via $Cr^{2+} \rightarrow Fe^{2+}$ energy transfer [11259-43]
11259 1A	Spectroscopic characterization of Fe:ZnAl $_2$ O $_4$, Fe:MgAl $_2$ O $_4$ and Fe:InP crystals for mid-IR laser applications [11259-44]
SESSION 9	ULTRAFAST LASERS I
11259 1F	Femtosecond 100 W-level OPCPAs from near-IR to short-wave-IR wavelengths [11259-49]
SESSION 10	ULTRAFAST LASERS II
11259 1H	Operation of a novel, dual function thin slab ultrafast amplifier at 1030nm, 515nm, and 343nm [11259-51]
11259 11	0.5 terawatt laser based on a hybrid architecture for high energy diode-pumped lasers delivering sub-500 fs pulses [11259-52]
11259 1J	10 petawatt lasers for extreme light applications [11259-53]
11259 1K	High temporal contrast, diode pumped, femtosecond laser providing 200fs, 1053nm pulses for seeding large scale Nd:glass laser systems [11259-54]
11259 1L	High power CEP-stable OPCPA at 800nm [11259-55]
SESSION 11	UV-VIS LASERS
11259 1M	2 kW cw laser in the green wavelength regime for copper welding (Invited Paper) [11259-56]
11259 10	Multiple and selectable wavelength green laser generation based on coaxial diode-end-pumping [11259-58]
11259 1P	High efficiency gallium nitride laser diode pumped CW ruby laser [11259-59]

POSTER SESSION

11259 1Q	Temperature influence on Er:GGAG crystal spectroscopic properties and its lasing at 3 µm [11259-60]
11259 1R	Efficient composite Nd:YVO/Nd:GVO laser with in-band pumping [11259-61]
11259 1S	Dual-wavelength Yb:CALGO laser with wavelength spacing tunability [11259-62]
11259 1T	Performance of diode-pumped Yb:YAP lasers with different crystal orientations [11259-63]
11259 1U	Generation of THz frequency offset with dual-wavelength Yb:KGW laser [11259-64]
11259 1V	Simplified cavity design for KLM Ti:sapphire oscillators [11259-65]
11259 1W	Thermal lensing in diode-pumped Yb:CALGO and Yb:KGW lasers [11259-66]
11259 1X	Programmable, pulse shaped diode laser [11259-67]
11259 21	Samarium-doping concentration influence on spectroscopic parameters of Sm:YAG crystal [11259-71]
11259 23	Fe:ZnMnTe laser generating around 5 µm at 78 K [11259-73]
11259 25	Generation of 40 W, 400 fs pulses at 1 MHz repetition rate from efficient, room temperature Yb:YAG double-pass amplifier seeded by fiber CPA system [11259-75]
11259 27	Multi-watt continuous-wave and passively Q-switched Tm:CaYAIO ₄ micro-lasers [11259-77]
11259 28	Laser spectroscopic and saturation properties of GR1 centers in synthetic diamond [11259-79]
11259 29	73-fs SESAM mode-locked Tm,Ho:CNGG laser at 2061 nm [11259-80]
11259 2D	Spectral density contrast in DPSS and ECD lasers for quantum and other narrow-linewidth applications [11259-84]